SADC REGIONAL INTER-LABORATORY PROFICIENCY TESTING EXERCISE FOR RABIES DIAGNOSIS

29 NOVEMBER 2011

Project Leader: Dr Claude Sabeta, designated expert of the OIE Reference Laboratory for rabies, Onderstepoort Veterinary Institute, Pretoria, South Africa

Exercise funded by the OIE World Animal Health and Welfare Fund, with donations from the US Centres for Disease prevention and Control (CDC)
World Organisation for Animal Health (OIE)
12, rue de Prony
75017 Paris
FRANCE
oie@oie.int
www.oie.int

Sub-Regional Representation for Southern Africa
Botswana Ministry of Agriculture
Mmaraka Road, Plot 4701
P.o.box 25662
Gaborone
BOTSWANA

+ 267 391 44 24
+ 267 391 44 17 (fax)
srr.southern-africa@oie.int
www.srr-africa.oie.int

Secretariat of the Southern African Development Community
Directorate Food, Agriculture and Natural Resources
SADC House, New Central Business District
P/Bag 0095
Gaborone
BOTSWANA

+ 267 395 1863
+ 267 397 2848 (fax)
registry@sadc.int
www.sadc.int

Agricultural Research Council (ARC)
Onderstepoort Veterinary Institute (OVI)
Rabies Unit
P/Bag X05
Onderstepoort 0110
Pretoria
REPUBLIC OF SOUTH AFRICA

+ 27 12 529 94 39
+ 27 12 529 93 90 (fax)
sabetac@arc.agric.za
www.arc.agric.za
Acronyms

ABLV Australian bat lyssavirus
ANSES Agence Nationale pour la Sécurité Sanitaire [France]
ARC Agricultural Research Council [South Africa]
CDC Centres for Disease prevention and Control [US]
DRC Democratic Republic of Congo
DUVV Duvenhage virus
FAO Food and Agricultural Organization of the United Nations
FAT Fluorescent antibody test
FITC Fluorescein isothiocyanate
FN False negative
FP False positive
GT genotype
ISO International Standards Organisation
IU International unit(s)
LBV Lagos bat virus
MOKV Mokola virus
OIE World Organisation for Animal Health
OVI Onderstepoort Veterinary Institute [ARC]
PBS Phosphate buffered saline
PT Proficiency test(ing)
RABV (classical) rabies virus
RNP Ribo-nucleoprotein
SADC Southern African Development Community
SEARG Southern and Eastern Africa Rabies Group
SOP Standard Operating Procedure(s)
SRR Sub-Regional Representation [OIE]
SRR-SA SRR for Southern Africa
UP University of Pretoria [South Africa]
WHO World Health Organisation

This report can be downloaded from the OIE Africa website at :
Disclaimer

All OIE (World Organisation for Animal Health) publications are protected by international copyright law. Extracts may be copied, reproduced, translated, adapted or published in journals, documents, books, electronic media and any medium destined for the public, for information, educational or commercial purposes, provided prior written permission has been granted by the OIE.

The designations and denominations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the OIE concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries.

The views expressed in signed articles are solely the responsibility of the authors. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by the OIE in preference to others of a similar nature that are not mentioned.

The wording Member (of the OIE) refers to OIE Member Countries and Territories.
All weight units expressed in tonnes are metric tons.
All distance and surface area units are expressed in metric units (km and km²)
All pictures courtesy of www.worldrabiesday.org (2011) unless mentioned otherwise.

Exercise conducted by Dr Claude Sabeta, with the support of Dr Shumba (OVI) and Prof Louis Nel and Dr Wanda Markotter of the Faculty of Natural and Agricultural Sciences of the University of Pretoria
Other technical staff involved : Mr Ernest Ngoepe, Ms Baby Phahladira (OVI)

© OIE (World Organisation for Animal Health), 2011
12, rue de Prony, 75017 Paris, France
Contents

Background 1

Objectives 1

Design 7

Materials and Methods 1

Composition of the Panel 2

Some definitions used for the interpretation of Results 2

Results 3

Discussion and Recommendations 4

Bibliography 5

Appendix 1. Generic Letter 6

Appendix 2. Result Sheet 7

Appendix 3. SADC Harmonised SOP For FAT Diagnosis 8

Useful web links

<table>
<thead>
<tr>
<th>Useful link</th>
<th>Website URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSES</td>
<td>www.anses.fr</td>
</tr>
<tr>
<td>ARC</td>
<td>www.arc.agric.za</td>
</tr>
<tr>
<td>CDC</td>
<td>www.cdc.gov</td>
</tr>
<tr>
<td>FAO</td>
<td>www.fao.org</td>
</tr>
<tr>
<td>Global Alliance for Rabies Control</td>
<td>www.rabiescontrol.net</td>
</tr>
<tr>
<td>OIE Africa portal</td>
<td>www.rr-africa.oie.int</td>
</tr>
<tr>
<td>OIE</td>
<td>www.oie.int</td>
</tr>
<tr>
<td>OVI</td>
<td>http://www.arc.agric.za/home.asp?pid=373</td>
</tr>
<tr>
<td>SADC</td>
<td>www.sadc.int</td>
</tr>
<tr>
<td>SEARG</td>
<td>www.searg.info</td>
</tr>
<tr>
<td>UP</td>
<td>www.up.ac.za</td>
</tr>
<tr>
<td>World Rabies Day</td>
<td>www.worldrabiesday.org</td>
</tr>
</tbody>
</table>
BACKGROUND
As a direct result of the recommendations emanating from the bi-annual conference of the Southern and Eastern African Rabies Group (SEARG) which took place in Maputo (Mozambique, January 25-27, 2011), participants (including public health officers, animal health officers, researchers, vaccine producing organisations and medical practitioners) resolved that laboratory capacity for animal rabies in the SADC region should be enhanced. One of the ways to achieve this was to conduct a proficiency testing, whereby the Onderstepoort Veterinary Institute would send a blind panel of samples to other veterinary diagnostic laboratories in the SADC region in order to evaluate the competency of diagnosticians in these laboratories. In performing this exercise, laboratories would use a standardised standard operating procedure (SOP) and biologicals including the anti-rabies conjugate. This exercise would also verify whether the rabies diagnostic training by the Onderstepoort Veterinary Institute from July 27-31, 2009 had been attained.

OBJECTIVES
• To prepare documents (acknowledgement forms, report forms), send calls for participation and request for import permits,
• To procure mice and materials for courier of samples,
• To select, prepare panel samples and test their stability,
• To courier panels of samples to national reference laboratories in the SADC region,
• To analyse and report the test results,
• To communicate to Heads of Laboratories, Chair SADC Laboratory Subcommittee and funders (OIE and FAO) and
• To prepare the proficiency test report to be submitted to the OIE SRR after completion of the training.

DESIGN
Materials and methods:
The intent to participate in the PT exercise and procedure to be followed was presented by Dr Sabeta at the SADC diagnostic sub-committee meeting held at the Kopanong Hotel and Conference Centre, Gauteng, South Africa (14-16 March 2011). Heads of Laboratories were contacted and requested to submit relevant documents for the importation of panels of samples and the anti-lyssavirus biological conjugate. Each laboratory was then assigned a random code to preserve anonymity. The panel of 11 samples to be tested (together with a vial of anti-rabies conjugate and instructions for reconstituting the conjugate), acknowledgement form (for checking the condition of the samples on receipt, Appendix 1) and the result form for each participating laboratory were sent to Heads of Laboratories (Table 1). Panels of samples were sent to all the laboratories, with the exception of Angola, Madagascar, Mauritius and the Seychelles (who did not indicate their intent to participate).

Table 1: List of SADC countries invited to participate in the proficiency test exercise.

<table>
<thead>
<tr>
<th>Country number</th>
<th>Country</th>
<th>Code</th>
<th>Contact person</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Angola</td>
<td>Lab 01</td>
<td>Dr L Modisa</td>
</tr>
<tr>
<td>2</td>
<td>Botswana</td>
<td>Lab 02</td>
<td>Dr L Mulumba</td>
</tr>
<tr>
<td>3</td>
<td>Democratic Republic of Congo</td>
<td>Lab 03</td>
<td>Dr C Kubi</td>
</tr>
<tr>
<td>4</td>
<td>Lesotho</td>
<td>Lab 04</td>
<td>Dr G Njunga</td>
</tr>
<tr>
<td>5</td>
<td>Madagascar</td>
<td>Lab 05</td>
<td>Dr AK Srivastava</td>
</tr>
<tr>
<td>6</td>
<td>Malawi</td>
<td>Lab 06</td>
<td>Dr S Khaiseb</td>
</tr>
<tr>
<td>7</td>
<td>Mauritius</td>
<td>Lab 07</td>
<td>Dr A Leon</td>
</tr>
<tr>
<td>8</td>
<td>Mozambique</td>
<td>Lab 08</td>
<td>Ms Marais/ Ms Khaiseb</td>
</tr>
<tr>
<td>9</td>
<td>Namibia</td>
<td>Lab 09</td>
<td>Ms J Le Roux</td>
</tr>
<tr>
<td>10</td>
<td>Seychelles</td>
<td>Lab 10</td>
<td>Dr W Shumba</td>
</tr>
<tr>
<td>11</td>
<td>South Africa (Allerton)</td>
<td>Lab 11</td>
<td>Dr M Dube</td>
</tr>
<tr>
<td>12</td>
<td>South Africa (OVI)</td>
<td>Lab 12</td>
<td>Dr C Ngeleja</td>
</tr>
<tr>
<td>13</td>
<td>Swaziland</td>
<td>Lab 13</td>
<td>Dr G Monga</td>
</tr>
<tr>
<td>14</td>
<td>Tanzania</td>
<td>Lab 14</td>
<td>Dr P Makaya</td>
</tr>
<tr>
<td>15</td>
<td>Zambia</td>
<td>Lab 15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Zimbabwe</td>
<td>Lab 16</td>
<td></td>
</tr>
</tbody>
</table>
The samples of this panel were composed of freeze-dried and homogenised mouse-infected brain materials, all prepared at Onderstepoort and original brain tissues submitted for routine rabies diagnosis (Table 2). All were positive for rabies virus antigen by the FAT method. The order of the samples in Table 2 is similar to that in the form for the inter-laboratory results filled by individual laboratories. The panel of samples included panel 1 with Lagos bat virus (LBV, genotype 2), Mokola virus (MOKV, genotype 3), Duvenhage virus (DUVV, genotype 4), mongoose rabies virus (genotype 1) and a negative brain tissue derived from a bovine. Panel 2 consisted of 5 positive samples, 2 strong positives and three samples diluted with uninfected brain tissues (1:5; 1:100 and 1:400) and a negative sample.

Table 2: Panel of samples sent to participating laboratories in SADC member countries.

<table>
<thead>
<tr>
<th>Virus material</th>
<th>Laboratory number</th>
<th>Code</th>
<th>Comments (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagos bat virus</td>
<td>RA390</td>
<td>201105PT294</td>
<td></td>
</tr>
<tr>
<td>Mokola virus</td>
<td>173/06</td>
<td>201105PT148</td>
<td></td>
</tr>
<tr>
<td>Duvenhage virus</td>
<td>SA/06</td>
<td>201105PT280</td>
<td></td>
</tr>
<tr>
<td>Mongoose rabies virus</td>
<td>1164/10</td>
<td>201105PT136</td>
<td></td>
</tr>
<tr>
<td>Bovine (negative)</td>
<td>366/11</td>
<td>201105PT154</td>
<td></td>
</tr>
<tr>
<td>Positive A</td>
<td>344/11</td>
<td>201105PT115</td>
<td>Field strain (of bovine origin, mongoose strain)</td>
</tr>
<tr>
<td>Positive B</td>
<td>341/11</td>
<td>201105PT272</td>
<td>Field strain (dog strain)</td>
</tr>
<tr>
<td>Positive C (1:5)</td>
<td>343/11</td>
<td>201105PT209</td>
<td>Diluted (Dog strain)</td>
</tr>
<tr>
<td>Positive D (1:400)</td>
<td>173/06</td>
<td>201105PT178</td>
<td>Diluted (MOKV)</td>
</tr>
<tr>
<td>Positive (1:100)</td>
<td>351/11</td>
<td>201105PT157</td>
<td>Diluted (Dog strain)</td>
</tr>
<tr>
<td>Negative</td>
<td>367/11</td>
<td>201105PT139</td>
<td>Canine origin</td>
</tr>
</tbody>
</table>

In order to validate the effect of transportation on the suitability of samples, a panel of 11 samples was sent to Dr Joule Kangumba (Potchefstroom Veterinary Laboratory, North West Province, South Africa) by courier on the 6 of June 2011 and sent back to Onderstepoort (received a week later). The panel was retested on the 14 of June and expected results were obtained indicating that the transportation had no effect on the condition of samples and did not interfere with the test. The panel of samples was then sent to all the Heads of Laboratories on the 20th of June, with the exception of the consignment for the DRC which was sent later on the 22nd of June, 2011. The shipment of panels of samples was done at ambient temperature by an international courier company. In the letter that accompanied the samples, laboratories were advised to store the panel at 4°C until analysis. The 22 of July was set as the deadline for the return of the test results with the exception for the DRC (29th July).

Some definitions used on the interpretation of the results

- A discrepancy - this is when a result given by a laboratory is different from the expected results (positive or negative). Discrepancies include false positives (FP) [the test result should actually be negative] and false negative (FN) results [the test result should actually be positive].

- Sensitivity = \(\frac{\text{Number of true positives found by laboratories}}{\text{Total number of positive samples (true pos + false neg)}} \times 100\)

- Specificity = \(\frac{\text{Number of true negatives found by laboratories}}{\text{Total number of positive samples (true neg + false pos)}} \times 100\)

- The terms “sensitivity” and “specificity” are used only for the purpose of evaluating the performance of laboratories in the frame of the inter-laboratory trial. Therefore the sensitivity and specificity of this inter-laboratory trial cannot be compared to the classical sensitivity and specificity of a technique as this is calculated on the basis of a random sampling.
NB:
For this proficiency test, a specificity and sensitivity of 65.4% and 80% respectively were obtained. This means the laboratories that participated in this proficiency test exercise are at different levels of competence. In future and in the subsequent PT exercises, all participating laboratories should therefore aim to improve on this. The specificity and sensitivity of the actual test (FAT) is approximately 100% and between 99.2% and 99.9%.

RESULTS
Most of the laboratories produced satisfactory results. Collectively, the performance of the laboratories can be significantly improved by reducing the number of false negative (n=23) and false positive results (n=9) which impact on the sensitivity and specificity respectively. The sample that was diluted 1:400 was the least detected and this possibly indicates the low sensitivity of some microscopes (may have a bearing on the service history and status of this very important piece of equipment) or could be the inexperience of some readers. This is given that all laboratories were provided with the same biological conjugate. The false positive results obtained by some laboratories for a negative control are a concern though. One possible reason for this result is that some laboratories may not have included Evans Blue in the test procedure as indicated in the protocol. In international interlaboratory proficiency testing exercise, co-ordinated by the French Agency for Food Environmental and Occupational Health and Safety (ANSES, France) in 2010, five laboratories returned three false positive results [4.6% of negative samples] and seven false negative results [8% of positive samples] (Robardet et al., 2011).

Results of the blind panel exercise for the 13 participating laboratories: discrepancies (in percentage of laboratories)

Results of the blind panel exercise for the 13 participating laboratories: discrepancies (in number of laboratories having 0 to 4 false results)
DISCUSSION AND RECOMMENDATIONS
This is the first coordinated exercise done by the OIE Rabies Reference Laboratory (ARC-OVI) for SADC MS. In future, it is anticipated that larger amounts of sample will be provided per vial. This is so because in the case of some freeze-dried mouse brain materials samples thin suspensions were obtained after re-suspending in water, making it very difficult to make a good brain smear on the slides. Note: it would have been appropriate to assess the efficiency of transportation of the panels of samples to each respective laboratory. The dates reflected on some of the returns do not show exactly when the panels were received. It should be emphasised that in future laboratories should return the acknowledgement form as soon as they have received the panel.

Based on this preliminary report, it is recommended that:

1. A follow up questionnaire to be sent to all participating laboratories with a view to establish how the whole exercise can be improved.

2. Specific attention and visits be undertaken particularly to those laboratories that may require technical assistance.

3. An assessment for the quality management system be undertaken in all laboratories participating in the PT exercise (by the Quality Management Committee).

4. Proficiency test exercises for rabies should be continued.

5. Funding for these PT exercises be provided by regional and international organisations such as the SADC, OIE and FAO.

6. The use of good negative and positive controls is recommended (Dean et al., 1996) because it can reduce the number of false positives.
BIBLIOGRAPHY

APPENDIX 1: GENERIC LETTER

You will find enclosed the test panel and all the required documentation for you to perform the inter-laboratory test for rabies for 2011:

The test panel consists of two parts: panel A (5 coded samples) and panel B (5 coded samples). Each sample contains 1 ml of homogenate of brain tissue and is susceptible to infection by classical rabies virus (RABV), Lagos bat virus (LBV), Mokola virus (MOKV) and Duvenhage (DUVV) strains. For panel A only, please indicate the order of fluorescence as instructed in the results form.

- Please return the acknowledgement form on the receipt of the panel of samples
- A result form is attached for the FAT
- Your laboratory code is .

The panel of samples should be kept refrigerated (at 4°C) until the analysis is undertaken. Each vial should be reconstituted with 1 ml of distilled water. As soon as the samples have been reconstituted, please immediately proceed with the test. In the test, you should include your usual controls in the procedure to validate the test. We expect all results to be returned by the end of July 2011. All results will be blindly analysed and a report will be sent to each of the participants.

Please do not hesitate to contact us should you have any question or clarification. We thank you in advance for participating in this proficiency test.

1b Acknowledgement form: attached
1c Results form: attached
1d Individual laboratory results are also attached.
1e Standard operating procedure used in the PT exercise.

[Signature]

First report: 20 October 2011
Revised version: 29 November 2011
Sample of a country - Results
Laboratory code: (Not disclosed)
Date of results: (Not disclosed)

<table>
<thead>
<tr>
<th>Tube code</th>
<th>Expected</th>
<th>Obtained result</th>
<th>Order of increasing fluorescence (for panel 2 only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>-</td>
<td>-</td>
<td>Bovine negative</td>
</tr>
<tr>
<td>208</td>
<td>+</td>
<td>-</td>
<td>Mongoose rabies virus</td>
</tr>
<tr>
<td>226</td>
<td>+</td>
<td>+</td>
<td>Duvenhage virus</td>
</tr>
<tr>
<td>265</td>
<td>+</td>
<td>+</td>
<td>Lagos Bat Virus</td>
</tr>
<tr>
<td>276</td>
<td>+</td>
<td>+</td>
<td>Mokola virus</td>
</tr>
<tr>
<td>Panel 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>+</td>
<td>+</td>
<td>1:100 dilution dog strain</td>
</tr>
<tr>
<td>157</td>
<td>+</td>
<td>-</td>
<td>Mongoose strain positive A (bovine origin)</td>
</tr>
<tr>
<td>175</td>
<td>+</td>
<td>+</td>
<td>Dog strain positive B</td>
</tr>
<tr>
<td>206</td>
<td>-</td>
<td>+</td>
<td>Canine negative</td>
</tr>
<tr>
<td>232</td>
<td>+</td>
<td>+</td>
<td>1: 5 dilution dog strain positive C</td>
</tr>
<tr>
<td>263</td>
<td>+</td>
<td>-</td>
<td>1: 400 Mokola strain</td>
</tr>
</tbody>
</table>

Signature

[Signature]
SADC Harmonized SOP of the Rabies Fluorescent Antibody Test (FAT)

Edition 1.0
Date Issued: 1 October 2010
Withdrawal Date:
Prepared by:
Dr. Claude Sabela
Dr. Wonderful Shumba
Dr Siegfried Khaiseb
Dr Chanasa Mpulume-Ngeleja

1OIE Rabies Reference Laboratory, ARC-OVI, 100 Old Soutpan Road, Onderstepoort, Pretoria, South Africa;
2Central Veterinary Laboratory, Head of Pathology, Parasitology & Rabies, Private Bag 13187, Windhoek, Namibia
3Central Veterinary Laboratory, Virology Department, P.O. Box 9254, Dar-es-Salaam, Tanzania.
<table>
<thead>
<tr>
<th>Content</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Purpose, scope and principle of test</td>
<td>10</td>
</tr>
<tr>
<td>2. Safety considerations and Precautions</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Personnel</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Laboratory operations</td>
<td>10</td>
</tr>
<tr>
<td>3. Specimen registration</td>
<td>11</td>
</tr>
<tr>
<td>4. Required materials</td>
<td>11</td>
</tr>
<tr>
<td>4.1. Equipment/facilities</td>
<td>11</td>
</tr>
<tr>
<td>4.2. Other supplies</td>
<td>11</td>
</tr>
<tr>
<td>4.3. Reagents</td>
<td>11</td>
</tr>
<tr>
<td>5. Test procedure</td>
<td>12</td>
</tr>
<tr>
<td>5.1 Preparation of test</td>
<td>12</td>
</tr>
<tr>
<td>5.1.1. Personnel qualifications/training</td>
<td>12</td>
</tr>
<tr>
<td>5.1.2. Preparation of reagents, test specimens, controls and other materials</td>
<td>12</td>
</tr>
<tr>
<td>5.2 Sample preparation</td>
<td>12</td>
</tr>
<tr>
<td>5.3 Fixation</td>
<td>13</td>
</tr>
<tr>
<td>5.4 Staining procedure</td>
<td>13</td>
</tr>
<tr>
<td>5.5. Mounting</td>
<td>13</td>
</tr>
<tr>
<td>6. Reading and recording results</td>
<td>13</td>
</tr>
<tr>
<td>7. Waste disposal</td>
<td>13</td>
</tr>
<tr>
<td>8. Quality control</td>
<td>13</td>
</tr>
<tr>
<td>9. External quality control</td>
<td>14</td>
</tr>
<tr>
<td>10. References</td>
<td>14</td>
</tr>
<tr>
<td>11. Appendixes</td>
<td>15</td>
</tr>
</tbody>
</table>
INTRODUCTION

Rabies is a fatal viral zoonotic disease of significant public and veterinary health threat. The causative agent of the disease, rabies virus (RABV), mainly infects warm-blooded vertebrates (both mammals and humans). The RABV infection is generally transmitted by the bite of infected animals, most commonly dogs and other wildlife carnivore species.

Rabies and rabies-related viruses are highly neurotropic members of the Lyssavirus genus, family Rhabdoviridae. Within this family of viruses are seven genotypes (gts) (1-7), namely:- classical rabies virus (gt1), Lagos bat virus (LBV, gt2), Mokola virus (MOKV, gt3), Duvenhage virus (DUVV, gt4), European bat lyssavirus type-1 and 2 (gts 5 & 6 respectively) and the Australian bat lyssavirus (ABLV, gt7) as well as unassigned viruses. Genotypes 1-4 have been identified from canid and chiropteran species in southern Africa, notably Zimbabwe and South Africa. In these countries where there is a large biological diversity of lyssaviruses, it is recommended to use polyclonal rabies conjugate for diagnosis. Natural infections with gts 2, 3 and 4 viruses have only been encountered on the African continent. With the exception of MOKV, all the lyssavirus genotypes and putative genotypes have been isolated exclusively from Chiropteran species.

Virus factories in infected cells appear as inclusion bodies, consisting predominantly of viral capsids (Ribo-Nucleo-Protein, RNP). The histologically demonstrable rabies inclusion bodies are called “Negri bodies”. Among the laboratory tests available for routine diagnosis, the fluorescent antibody test (FAT), which detects viral antigen is the gold standard and should be used by all laboratories performing such work. The test is fast (results are obtained in less than 3 hours), comparatively inexpensive and more accurate (can detect 97-99% of positive specimens) than either histological based or mouse inoculation tests. FAT is the recommended by both the WHO and the OIE. Negative samples with human contact (bite) history should be subjected to viral propagation techniques (mice or cell cultures) and subsequently confirmed by FAT.

1. PURPOSE, SCOPE AND PRINCIPLE OF TEST

The purpose of this SOP is to describe the method of rapid diagnosis of rabies by FAT on fresh or glycerol-preserved brain specimens. In brief, this method is used for detecting rabies inclusion bodies (viral antigen) in cells of acetone-fixed brain smears. The smears are incubated with FITC-labelled anti lyssavirus polyclonal antibody. Unbound antibody is then removed by washing and smears are examined by fluorescence microscopy. In rabies positive specimens the antibodies bind to the antigen and produce apple-green fluorescing inclusion bodies or viral aggregates when viewed under a fluorescent microscope.

2. SAFETY CONSIDERATIONS AND PRECAUTIONS

2.1. Personnel

2.1.1. All laboratory personnel who handle and work with suspected rabies virus infected tissue specimens must be well trained, competent and comply with national biocontainment and biosafety regulations to protect staff from contact with pathogens. The conditions should include:

2.1.2. All personnel involved in rabies testing should receive pre-exposure immunisation.

2.1.3. Only personnel who demonstrate an antibody titre of 0.5 international units (IU) per ml or higher should be allowed to handle the suspected rabies infected specimens.

2.1.4. Personnel should be routinely monitored every 6 months for adequate rabies neutralising antibodies. Booster vaccinations must be given when the titre falls below 0.5 IU/ml. In the absence of serological monitoring, the vaccination regimen should consist of a booster vaccination at 1 year and thereafter every 1-3 years, depending on the vaccine.

2.1.5. Appropriate protective clothing must be worn at all times.

2.2. The laboratory operations

2.2.1. The laboratory should comply with the OIE guidelines on Biosafety and biosecurity in the veterinary microbiological laboratory and animal facilities. Such practices include that:

- The specimens must only be processed in a Class II Biological Safety Cabinet.
- Aerosols – high speed centrifugation and any procedure that generates aerosols should be carried out in tightly closed containers and possibly under a negative draught hood.
- All contaminated instruments and utensils must be sterilised by autoclaving immediately after the test procedure is finished and before they are washed.
- Disposable items must be placed into sterilising bags and must be sterilised by autoclaving before disposal.
- Disinfection of biological safety cabinets and used instruments should be done with disinfectants such as 1% Virkon and/or other virucidals efficient to kill lyssaviruses.
3. SPECIMEN REGISTRATION
3.1. Allocate rabies laboratory numbers using the ISO country code (2 characters), laboratory code and number representing the total number of samples received to date.
3.2. Assign to each specimen a rabies laboratory number, starting with the ISO country code, followed by the specimen number e.g. 01 if it is the first sample of the year, followed by the last 2 digits of the year e.g. a specimen from Swaziland will be registered as: SZ01/10 or if there are two labs in that country then it would be SZCVL01/10 or SZM01/10, if it is from Mbabane Veterinary Laboratory.
3.3. Record this rabies laboratory number on the submission form (Appendix 1) as well as the specimen bottle.

4. REQUIRED MATERIALS
4.1. Equipment and Facilities
4.1.1. Fluorescent microscope, Zeiss or equivalent, with mercury vapour lamp, 50 or 100 watt (450-490 nm excitation filters, and 510 nm stop filter).
4.1.2. Refrigerator (+2 to +8°C).
4.1.3. Freezers, chest or upright, with temperature of not less than -20°C (e.g. -70oC).
4.1.4. Incubator, temperature capability of 37°C±2°C).
4.1.5. Double door autoclave, any brand.
4.1.6. Class II biological safety cabinets, any approved brand.
4.1.7. Single channel Micropipettor for drawing 100μl volumes.
4.1.8. Single channel Micropipettor for drawing 0.5-10μl volumes.
4.1.9. Vortex mixer.
4.1.10. pH meter.
4.1.11. Dark room.

4.2. Other supplies
4.2.1. Closed plastic container for use as a humidified chamber
4.2.2. Microscope slides, clear, frosted one end, any brand, non-fluorescent
4.2.3. Cover slips 13 mm thick, any brand
4.2.4. Petri dishes, disposable or other suitable container to place brain material
4.2.5. Non fluffing high quality absorbent paper towel
4.2.6. Coplin staining jar
4.2.7. HB pencil for labelling slides
4.2.8. Lens cleaning tissue
4.2.9. Squeeze/wash bottle with PBS
4.2.10. A suitable containers with virucidal disinfectant capable of killing rabies virus
4.2.11. PPE including Nitrile/Latex powder free disposable Gloves
4.2.12. Disposable tips (1-10 μl, 20-200 μl)
4.2.13. Autoclavable bags

4.3. Reagents
4.3.1. 0.01M Phosphate buffered saline (PBS), pH 7.2-7.4 (Refer to Appendix 2 for preparation instructions) or tablets/sachets.
4.3.2. Heat sterilized distilled or deionized water, or water of an equivalent purity.
4.3.3. High-grade (99.9 to 100%) acetone (CH3)2CO (MW 58.8), Assay by (GC) is minimum of 99.5%, ASC grade, or similar. Verify quality of acetone before use (Refer to instructions under quality control).
4.3.4. High grade glycerol
4.3.5. Anti-lyssavirus FITC polyclonal conjugate (can be obtained from the ARC-Onderstepoort Veterinary Institute (www.arc.agric.za), SANOFI Pasteur (www.sanofipasteur.com), Chemicon (www.chemicon.com) with a predetermined working dilution.
4.3.6. Lens cleaning fluid (Appendix 5).
4.3.7. Mounting media/mountant (Appendix 4).
4.3.8. Positive and negative control brain specimens.
4.3.9. Fresh or 50% glycerol saline (Appendix 3) preserved test brain specimen.
4.3.10. Evans blue. Counterstain added to the working dilution of the conjugate is optional. Evans Blue counterstain (0.5%) can be aliquoted and stored at +4oC for up to 6 months and indefinitely at -20oC. The amount of counterstain added to the conjugate is determined by titration when the working dilution of the conjugate is determined. Due to counterstain, the cells will be noticeably red, but should not be strongly red as to diminish the specific green fluorescence. An Evans Blue concentration of 0.00125% works very well in many laboratories. This concentration is prepared by adding 2.5 μl of 0.5% stock dye solution per ml of conjugate diluent.
5. TEST PROCEDURE

5.1. Preparation for the test

5.1.1. Personnel qualifications and training:
• Personnel must be competent in the following:
 a. Preparation and proper handling of test reagents and biological materials.
 b. Calibration, maintenance and use of instruments listed in section 4.
 c. Adherence to good laboratory practices.

5.1.2. Preparation of equipment/instrumentation
• Equipment is calibrated and certified according to respective testing Laboratory Standard Operating Procedures.
• Use clean and or sterile equipment
• Clean the objectives of the microscope lens with lens cleaning fluid (see appendix 5 on how to prepare).

5.1.3. Preparation of reagents, test specimens, controls and other materials
• Prepare the diluents for the conjugate which is 0.01M PBS pH 7.2±0.2 with 0.5% Evans blue. This can be prepared and aliquoted into 1 ml volumes at -20°C.
• Determine the optimum working dilution of the anti-lyssavirus FITC polyclonal conjugate as per manufacturer’s instructions to provide an excellent staining of viral antigen in brain smears. On the day of specimen testing, prepare only enough of the optimum working dilution conjugate for the number of samples to be tested by adding working dilution of the conjugate into the diluent above (PBS with 0.5% Evans Blue).
• On each day of performing a test, ensure that there is sufficiently chilled acetone preferably kept -20°C.
• Keep microscope slides in an acetone bath at room temperature for degreasing and take them out when needed for staining.
• Dry the slides using appropriate absorbent paper towel.
• Phosphate buffered saline (PBS) 0.01M pH 7.2-7.4 (Refer to Appendix 2 for instructions on how to prepare the buffer).
• Keep fresh filtered acetone in a Coplin or staining jar in a freezer (-20°C).
• Preserve fresh brain specimens that cannot be tested on the day of arrival in 50% glycerol-saline (refer to Appendix 3 for instructions to prepare glycerol-saline). Specimens in 50% glycerol-saline can be stored at room temperature for a maximum of 2 weeks, or frozen at -20°C or at a lower temperature overnight.
• Thaw frozen control samples on the day of testing by placing them in a biosafety cabinet at room temperature for 30-60 minutes.
• Prepare mounting media (Refer to Appendix 4 for instructions on how to prepare the mounting media).

5.2. Sample preparation

ALL PROCEDURES SHOULD BE PERFORMED IN A CLASS II BIOLOGICAL SAFETY CABINET
AND GLOVES AND A GOWN MUST BE WORN AT ALL TIMES.

NOTE 1: PREFERABLY, SUBMITTED SPECIMENS NEED TO BE TESTED ON THE DAY OF ARRIVAL
AND IF THIS IS NOT POSSIBLE, SHOULD BE TESTED AT THE EARLIEST CONVENIENCE. USE A
FRESH SET OF STERILE, CLEAN EQUIPMENT AND SUPPLIES FOR EACH BRAIN SPECIMEN
(FORCEPS, SCISSORS, GLASS SLIDE ETC).

NOTE 2: ALWAYS PREPARE THE CONTROL SLIDES LAST.

5.2.1. Remove clean slides from acetone and dry them with appropriate absorbent paper.

5.2.2. Label the frosted end of the slide with the corresponding rabies specimen identity using a pencil.

5.2.3. Using forceps, take out the brain specimen from its original container and place on a petri dish or any other suitable shallow container while exposing the different parts of the brain required for the test.

5.2.4. Using a pair of scissors, cut small samples (about 2 to 3 mm) of the fresh brain specimen from the brain stem (thalamus, pons, medulla oblongata), cerebellum and hippocampus and place each piece onto two ends of the microscope slide/ wooden tongue depressor to constitute a composite of samples in a pair. The composite samples should be placed within a close distance so that when an impression smear is prepared all the brain samples in the composite are exposed and the resulting smear is about 1cm in diameter. In case the brain specimen is preserved in 50% glycerol saline, each cut brain sample should be blotted on paper towel to remove excess glycerol and then treated as fresh ones.
5.2.5. Using the forceps, return the original brain specimen into its original container and place it at -20°C or lower temperature for further storage.
5.2.6. Make impression smears by lightly pressing the microscope slide for staining on the two sets of brain composite samples.
5.2.7. Prepare the negative and positive controls in the same manner as test samples and include them in every staining.
5.2.8. Air dry smears for five minutes at room temperature.
5.2.9. Discard all the contaminated equipment/materials used to obtain the smear into a container with disinfectant.

5.3. Fixation
5.3.1. Immerse the slides into fresh cold acetone and then keep them at -20°C for 20 minutes.
5.3.2. Air-dry the fixed slides for approximately 5 minutes in the Class II Biological Safety cabinet until all traces of acetone and moisture have evaporated.

5.4. Staining procedure
5.4.1. Prepare a sufficient amount of anti-lyssavirus FITC conjugate according to conjugate dilution titration table.
5.4.2. Place the slides into a humidified chamber. The humidified chamber is prepared by placing absorbent paper in an enclosed container with a flat bottom, and then pouring some PBS on the paper to create moisture during the incubation step. The paper should not be too wet as this may interfere with conjugate.
5.4.3. Apply freshly-prepared working dilution conjugate to cover the smear (approximately 150 μl per smear will suffice for a 1 cm diameter of smear. Too little conjugate will result in excessive drying while too much of the conjugate will increase the possibility of the conjugate running off the slides and these could both produce undesirable results).
5.4.4. Place lid on humidified chamber.
5.4.5. Incubate the slides in the humidified chamber at 37°C for 30 minutes.
5.4.6. At the end of the 30-min incubation, remove excess conjugate and wash or rinse the slides in PBS three times and then blot dry them on paper. Please ensure that the slides are not completely dry!

5.5. Mounting
5.5.1. Place one drop of mounting media on the slide and place a coverslip on top, ensuring that the mounting fluid is evenly distributed over the smear, while minimising air bubbles on the smear.
5.5.2. Place slides in covered slide container and take to microscope room (Dark room) for reading.

6. READING AND RECORDING OF RESULTS
6.1. Two people must read all the stained slides and control smears. Positive controls must be positive and the negative control sample must be negative for the results to be acceptable.
6.2. The stained slides should be examined using the 40X objective starting with positive and negative controls. In positive controls, the presence of rabies antigen is demonstrated by appearance of apple green oval to round shaped inclusion bodies of various sizes, some as dust particles studded against a black to dark greenish background, while such fluorescing inclusion bodies should not appear in negative control smears.
6.3. Continue reading the test smears.
6.4. Grade the smear quantitatively with a score of +1 to +4, depending on the abundance of viral antigens and give a quantitative grade of +1 to +4 depending on the intensity of fluorescence and record the results in the appropriate test results recording system.

7. WASTE DISPOSAL
All the generated waste should be sterilised in autoclave before disposal according to the waste disposal SOP of each respective laboratory.

8. QUALITY CONTROL
8.1. Each new lot of acetone must be checked to ensure that the acetone does not interfere with the staining of the brain smears.
8.1.1. Select tissue from 4 to 6 previous specimens that have stained both weakly and strongly positive for rabies virus.
8.1.2. Prepare two slides from each specimen.
8.1.3. Fix one set of slides in the acetone in use and the other set in the new lot of acetone.
8.1.4. Follow the procedures for fixing and staining.
8.1.5. Read both sets of slides noting the amount of virus as well as intensity of staining.
8.1.6. Both sets of slides must have identical results. If the new acetone does not meet this criterion, discard and purchase another lot.
7.2 Similarly, the optimal working dilution of a new batch of conjugate must be determined by titration. Naturally, the working dilution may differ between laboratories depending on the microscope optimal system.

7.2.1 Select known positive and negative brain material to prepare controls.

Inoculate suckling mice with a 10% suspension of sample that previously tested positive with a score of +4. Pool brain samples from which succumb and test positive for rabies virus antigen. To prepare the negative control, inoculate suckling mice with PBS. Harvest brain tissues after 28 days, pool and place in vials.

7.2.2 Prepare two-fold dilutions of the conjugate in PBS starting from 1:80 to 1:2560.

7.2.3 Prepare two slides for each specimen.

7.2.4 Fix the slides as described in the protocol.

7.2.5 Follow the procedures for fixing and staining.

7.2.6 Read both sets of slides noting the amount of virus and intensity.

7.2.7 The least conjugate dilution that gives an excellent staining will be used as a working dilution of that batch.

7.2.8 Prevent conjugate contamination by dispensing 1-ml quantities of the diluted conjugate into eppendorf tubes and store at -20°C or lower.

9. External quality control will involve an annual participation by each of the SADC member laboratories in an FAT proficiency testing on a panel of rabies positive and negative samples.

10. REFERENCES

Department of Agriculture, Government Printer, Pretoria, South Africa. 77pp.

SADC RABIES SPECIMEN SUBMISSION FORM Namibia Central Veterinary laboratory

Please note that specimens in formalin cannot be reliably tested for rabies. Brain samples for Rabies must be submitted fresh on ice or in Glycerol saline.

Rabies Number: e.g NA01/10 SPECIES SENDER’S REFERENCE

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>AO</td>
</tr>
<tr>
<td>Botswana</td>
<td>BW</td>
</tr>
<tr>
<td>Lesotho</td>
<td>LS</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>CD</td>
</tr>
<tr>
<td>Madagascar</td>
<td>MG</td>
</tr>
<tr>
<td>Malawi</td>
<td>MW</td>
</tr>
<tr>
<td>Mauritius</td>
<td>MU</td>
</tr>
<tr>
<td>Mozambique</td>
<td>MZ</td>
</tr>
<tr>
<td>Namibia</td>
<td>NA</td>
</tr>
<tr>
<td>Seychelles</td>
<td>SE</td>
</tr>
<tr>
<td>South Africa</td>
<td>ZA</td>
</tr>
<tr>
<td>Swaziland</td>
<td>SZ</td>
</tr>
<tr>
<td>Tanzania</td>
<td>TZ</td>
</tr>
<tr>
<td>Zambia</td>
<td>ZM</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>ZW</td>
</tr>
</tbody>
</table>

11. APPENDICES

APPENDIX 1: ISO country codes and submission form ISO country codes

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>AO</td>
</tr>
<tr>
<td>Botswana</td>
<td>BW</td>
</tr>
<tr>
<td>Lesotho</td>
<td>LS</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>CD</td>
</tr>
<tr>
<td>Madagascar</td>
<td>MG</td>
</tr>
<tr>
<td>Malawi</td>
<td>MW</td>
</tr>
<tr>
<td>Mauritius</td>
<td>MU</td>
</tr>
<tr>
<td>Mozambique</td>
<td>MZ</td>
</tr>
<tr>
<td>Namibia</td>
<td>NA</td>
</tr>
<tr>
<td>Seychelles</td>
<td>SE</td>
</tr>
<tr>
<td>South Africa</td>
<td>ZA</td>
</tr>
<tr>
<td>Swaziland</td>
<td>SZ</td>
</tr>
<tr>
<td>Tanzania</td>
<td>TZ</td>
</tr>
<tr>
<td>Zambia</td>
<td>ZM</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>ZW</td>
</tr>
</tbody>
</table>
APPENDIX 2.
Preparation of 0.01M PBS, pH 7.2-7.4
Sodium chloride (NaCl) 100 g
Potassium chloride (KCl) 2.5 g
Potassium dihydrogen orthophosphate (KH₂PO₄) 2.5 g
Disodium hydrogen phosphate dodecahydrate (Na₂HPO₄·12H₂O) 14.5 g
Add 10 litres of distilled water and dissolve completely. The PBS should have a pH of between 7.2 and 7.4. Do not use PBS which has some precipitates.

APPENDIX 3.
Preparation of 50% glycerol saline preservative solution
Double-distilled glycerol 500 ml
Phosphate buffered saline (PBS) pH 7.4 500 ml
Merthiolate (not necessary) 0.1 g

APPENDIX 4.
Preparation of mounting media for FAT: buffered glycerin solution pH 8.5
A. Concentrated solutions
Solution A. pH 4.2
KH₂PO₄ 89.82 g
NaCl 8.5 g
Deionised water 1 litre
Solution B pH 8.8
KH₂PO₄ 114.96 g
NaCl 8.5 g
Deionised water 1 litre

B. Buffer preparation
Solution A 1 ml
Solution B 100 ml

C. Mounting medium
Bidistilled glycerol 9 vol
Buffer 1 vol
Adjust the pH to 8.5 with solution A or B. Mounting solution should be kept at room temperature and a new batch is prepared every 3 months.

APPENDIX 5.
Preparation of lens cleaning fluid
Isopropyl alcohol 50 ml
Distilled or deionised water 150 ml
Teepol 3 drops