Molecular typing of *Mycobacterium avium* subspecies *paratuberculosis* strains from different hosts and regions

(1) Instituto Vasco de Investigación y Desarrollo Agrario (NEIKER), Berreaga 1, 48160 Derio, Bizkaia, Spain
(2) Goat Health Division, Central Institute for Research on Goats, Makhdoom, Post Farah Dist. Mathura, (UP) 28 11 22, India
(3) Universidad de Córdoba, Facultad de Veterinaria, Campus Universitario de Rabanales, Ctra. Madrid-Cádiz, km. 396, 14071 Córdoba, Spain
(4) Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia
(5) NSW Agriculture, Camden NSW 2570, Australia
(6) USDA-ARS-National Animal Disease Center, New Bolton Center, Kennett Square, PA 19348-1692, United States of America

Submitted for publication: 8 November 2004
Accepted for publication: 6 February 2005

Summary
The IS1311 polymerase chain reaction-restriction endonuclease analysis was used to detect genetic differences among 38 *Mycobacterium avium* subsp. *paratuberculosis* (Map) isolates from cattle, sheep, goats and bison from distinct regions of Spain, India and the United States of America (USA). In Spain, all eight bovine isolates, three out of six caprine isolates and one of ten ovine isolates were of the C type, while the other nine ovine isolates and three caprine isolates were of the S type. In India, all five ovine isolates and six caprine isolates were of the B type, and so were all three isolates from bison (*Bison bison*) from the USA. These results show that there are genetic differences between Map isolates related to geographic and host factors that have a potential use in the epidemiological tracing of new paratuberculosis isolates.

Keywords

Introduction

Genotypic differences have been used to characterise isolates of *Mycobacterium avium* subsp. *paratuberculosis* (Map), the agent of paratuberculosis in ruminants. According to Collins *et al.* (2), these differences make possible a classification of isolates into two groups: cattle-type strains and sheep-type strains.

Although the most widely used typing methods are IS 900 restricted fragment length polymorphisms (RFLP) (10) analysis and restricted genome on pulsed field gel electrophoresis (6), Marsh *et al.* (8) developed a polymerase chain reaction-restriction endonuclease analysis (PCR-REA) based on polymorphisms in IS1311, an insertion sequence present in Map and in *Mycobacterium avium* subsp. *avium* (Maa) in seven to ten copies. This technique provides an easy and rapid method of
distinguishing between Maa and both cattle and sheep Map strains. In a later study, Whittington et al. (15) discovered a new IS1311 restriction band pattern in bison isolates from Montana in the United States of America (USA). In that study, this IS1311 PCR-REA typing method was applied to a series of mycobacterial isolates in order to detect any genetic differences related to host or geographical origin.

Materials and methods

The identity and origin of each isolate is shown in Table I. Sample processing for culture was performed as described by Aduriz et al. (1). While the Indian ovine and caprine samples were cultured on Herrold's egg yolk medium (HEYM) without sodium pyruvate, the Spanish bovine paratuberculosis isolates were grown on HEYM supplemented with sodium pyruvate. The Spanish ovine and caprine paratuberculosis strains were grown on Middlebrook 7H11 medium supplemented with Oleic acid-albumin-dextrose-catalase (OADC) (7H11) (Difco, Detroit, Michigan, USA) and on Löwenstein-Jensen (L-J) (Difco). Bison Map isolates grew on L-J or on 7H9, and the remaining mycobacteria were isolated on Coletos (Bio-Mérieux, Marcy-l’Etoile, France). All media except Middlebrook and Coletos were supplemented with mycobactin J (Allied Monitor, Inc., Fayette, Missouri, USA). Mycobacterium avium subsp. paratuberculosis was identified on the basis of time of incubation to visible colonies, colony and bacilli morphology including acid fastness, mycobactin dependance on egg-based media, and IS 900 PCR.

For DNA extraction, colonies were suspended in 500 µl of TE-Triton X100 (Calbiochem, Bad Doden, Germany), subjected to three cycles of freezing and boiling, and treated according to the protocol described by Garrido et al. (5). Final DNA concentration was measured in a NanoDrop’ ND-1000 spectrophotometer (NanoDrop Technologies, Inc., Rockland, Delaware, USA).

Five microlitres of the resuspended DNA were used in a IS1311 PCR mix containing 0.8 µM of primers M-56 and M-119 (8), 200 µM of each of the nucleotides dATP, dTTP, dGTP and dCTP, 20 mM of Tris-HCl, 50 mM of KCl,

<table>
<thead>
<tr>
<th>Geographic origin</th>
<th>Host</th>
<th>Sample</th>
<th>Species</th>
<th>Primary culture</th>
<th>Number of isolates</th>
<th>Isolate code</th>
<th>IS900 PCR</th>
<th>IS1311 PCR-REA type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>Basque Country</td>
<td>Cattle</td>
<td>Faeces</td>
<td>Map</td>
<td>HEYM+</td>
<td>5</td>
<td>341/02, 3515/02, 2059/03, 2226/03, 2702/03</td>
<td>Pos</td>
</tr>
<tr>
<td></td>
<td>Castilla y León</td>
<td>Cattle</td>
<td>Tissues</td>
<td>Map</td>
<td>HEYM+</td>
<td>2</td>
<td>2484/02-7, 2484/02-18</td>
<td>Pos</td>
</tr>
<tr>
<td></td>
<td>Madrid</td>
<td>Cattle</td>
<td>Faeces</td>
<td>Map</td>
<td>HEYM+</td>
<td>1</td>
<td>181/02</td>
<td>Pos</td>
</tr>
<tr>
<td></td>
<td>Andalucia</td>
<td>Goat</td>
<td>Tissues</td>
<td>Map</td>
<td>L-J</td>
<td>3</td>
<td>s/n, 43, 52504</td>
<td>Pos</td>
</tr>
<tr>
<td></td>
<td>Basque Country</td>
<td>Sheep</td>
<td>Tissues</td>
<td>Map</td>
<td>7H11</td>
<td>1</td>
<td>P38I</td>
<td>Pos</td>
</tr>
<tr>
<td></td>
<td>Basque Country</td>
<td>Sheep</td>
<td>Tissues</td>
<td>Map</td>
<td>7H11</td>
<td>8</td>
<td>9G, 12I, 14I, 17G, 18I, 19I, 21I, 26ov</td>
<td>Pos</td>
</tr>
<tr>
<td></td>
<td>Andalucia</td>
<td>Sheep</td>
<td>Tissues</td>
<td>Map</td>
<td>L-J</td>
<td>1</td>
<td>27</td>
<td>Pos</td>
</tr>
<tr>
<td></td>
<td>Basque Country</td>
<td>Cattle</td>
<td>Tissues</td>
<td>Maa</td>
<td>Coletos</td>
<td>1</td>
<td>3321/00</td>
<td>Neg</td>
</tr>
<tr>
<td></td>
<td>Andalucia</td>
<td>Goat</td>
<td>Tissues</td>
<td>Maa</td>
<td>Coletos</td>
<td>1</td>
<td>Cap 120</td>
<td>Neg</td>
</tr>
<tr>
<td></td>
<td>Basque Country</td>
<td>Badger</td>
<td>Tissues</td>
<td>M. intracellulare</td>
<td>Coletos</td>
<td>1</td>
<td>2934/03</td>
<td>Neg</td>
</tr>
<tr>
<td></td>
<td>Cantabria</td>
<td>Cattle</td>
<td>Tissues</td>
<td>M. bovis</td>
<td>Coletos</td>
<td>1</td>
<td>320/03</td>
<td>Neg</td>
</tr>
<tr>
<td></td>
<td>Castilla y León</td>
<td>Goat</td>
<td>Tissues</td>
<td>M. chelonae</td>
<td>Coletos</td>
<td>1</td>
<td>858/03</td>
<td>Neg</td>
</tr>
<tr>
<td>India</td>
<td>Farah</td>
<td>Goat</td>
<td>Faeces</td>
<td>Map</td>
<td>HEYM−</td>
<td>6</td>
<td>S3, S5, T7, S2, S28, S4</td>
<td>Pos</td>
</tr>
<tr>
<td>Mathura</td>
<td>Sheep</td>
<td>M. bovis</td>
<td>HEYM−</td>
<td>3812, S9, V95, V16, 43</td>
<td>Pos</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathura</td>
<td>Sheep</td>
<td>M. asiaticum</td>
<td>HEYM−</td>
<td>V 30</td>
<td>Neg</td>
<td>Negative PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Montana</td>
<td>Bison</td>
<td>Tissues</td>
<td>Map</td>
<td>L-J</td>
<td>3</td>
<td>6.1, 6.3, 10.3</td>
<td>Pos</td>
</tr>
<tr>
<td>Montana</td>
<td>Bison</td>
<td>Sheep</td>
<td>Tissues</td>
<td>Maa</td>
<td>7H9</td>
<td>1</td>
<td>13.1</td>
<td>Neg</td>
</tr>
</tbody>
</table>

2.5 mM of MgCl₂, and 2 U of Taq polymerase (Invitrogen Ltd, Paisley, UK). The assay was performed in a GeneAmp 9,600 PCR system (Applied Biosystems, Foster City, California, USA) under the following conditions: one cycle of 3 min at 94°C and 37 cycles of 30 s at 94°C, 15 s at 62°C and 1 min at 72°C. In order to confirm Map identification by IS131I PCR, an IS900 PCR was also performed, using primers and conditions described by Garrido et al. (5). DNA bands of 608 bp and 389 bp were considered PCR positive results for IS131I and IS900, respectively, after separation in a 2% agarose gel stained with ethidium bromide. An IS131I REA was performed to detect the C/T polymorphism at base pair 223 between Map strains. Eight microlitres of the positive IS131I PCR solution was digested for 2 h at 37°C in a 16 µl reaction containing 2 U of each endonucleases HinfI and MseI supplemented with buffers provided by the manufacturer (New England Biolabs, Inc., Beverly, Massachusetts, USA). Band patterns visualised after electrophoresis on 4% agarose gels stained with ethidium bromide were interpreted in the manner indicated by Whittington et al. (15): Map S strains were defined by two bands of 285 bp and 323 bp (all IS131I copies have a C at 223 bp); Map C strains were characterised by four bands of 67 bp, 218 bp, 285 bp and 323 bp (some copies with a C and some with a T); Map B strains were identified by three bands of 67 bp, 218 bp and 323 bp (T in all copies); and finally, isolates showing three bands of 134 bp, 189 bp and 285 bp were considered as Map C at base pair 223 and T at base pair 422.

After purification with a GFX™ PCR DNA purification kit (Amersham Biosciences, Buckinghamshire, UK), IS131I PCR products of two ovine (3812, S9) and two caprine (S3, S5) isolates from India, and one ovine (269ov) and one bovine (3515/02) isolates from Spain were sent to the DNA Automatic Sequencing Service of the Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas in Madrid to confirm the DNA sequence of the amplicons and the point mutations between strains. Both forward and reverse strands were sequenced with M56 and M119 PCR primers, respectively. Vector NTI v 8.0 software (InforMax Inc., Oxford, UK) was used to analyse and compare these sequences with those described earlier for Map and Maa C, S and B strains (GeneBank U16276, and EMBL AJ223974, AJ223975, AJ308375).

The DNA from cultures of eight mycobacteria other than Map (Maa, M. intracellulare, M. bovis, M. chelonae, M. asiaticum) was used as a negative control for IS900 and IS131I PCR tests. Identification of non-Map mycobacteria was performed by the National Reference Laboratory at the Centro Nacional de Microbiología (Instituto de Salud Carlos III, Madrid, Spain) by bacteriological and molecular methods.

Results

Both IS900 and IS131I PCR and REA results are given in Table I. As expected, all Map isolates yielded positive results in both PCR assays, and all Maa isolates were also positive in IS131I PCR. None of the other isolates was positive in any of the PCR assays performed, except M. intracellulare, which yielded a band of approximately 520 bp in the IS131I PCR. Although the 67 bp band of C and B type digests is difficult to see, all samples submitted to restriction analysis gave unmistakable band patterns (Fig. 1) which corresponded to the four possibilities described above, except for the M. intracellulare isolate which produced two bands of approximately 275 bp and 245 bp. All Map isolates from India were identified as B type strains regardless of whether they were of ovine or caprine origin. With regard to the Spanish cultures, while all the bovine isolates gave a type C REA pattern, only one (P38I) of the ten ovine isolates analysed was of C type, while all the others were of S type. Three of the six caprine paratuberculosis isolates were S type and three were C type. Finally, the three bison Map isolates from the USA were classified as B strains. MseI endonuclease recognised the T at base position 422 of the two Maa isolates (substituted by a C in paratuberculosis strains), which produced Maa type REA patterns.

![Fig. 1](image.png)

Photograph of IS131I polymerase chain reaction-restriction endonuclease analysis electrophoresis on 2% agarose gel stained with ethidium bromide.

Lanes 1 and 10, 1Kb DNA size marker. Lane 2 shows an S pattern from a Spanish ovine isolate (269ov). Lane 3 shows a C type pattern from a Spanish bovine isolate (3515/02). Lane 4 shows a type B pattern from an American bison isolate (B-3). Lanes 5 and 6 show type B pattern from Indian caprine isolates (S5 and T7). Lanes 7 and 8 show type B pattern from Indian ovine isolates (3812 and S9). Lane 9 corresponds to an avian type isolate from a Spanish goat (Cap120).
The DNA sequences obtained from the amplified products matched exactly with those published previously for each strain type. The ovine Map isolate from Spain, which was S type in restriction analysis, had a C at base position 223. A mixed C/T signal was detected at the same base position in the sequence of the Spanish bovine paratuberculosis isolate, classified as C type by REA. And finally, all four Indian ovine and caprine PCR products sequenced possessed a T in all copies at this position, which had only been found before in bison isolates from the USA.

Discussion

Results of this study confirm previous findings (14) that both IS900 and IS1311 PCR techniques are suitable for use in Map confirmation and typing. The unique amplification observed in M. intracellulare IS1311 PCR, is easily distinguishable and can be confirmed by REA.

The cultural characteristics and restriction patterns of Spanish paratuberculosis isolates analysed in the authors' laboratory to date are in accordance with part of the literature (8, 15). These results indicate that cattle are mainly infected with type C Map, which is readily isolated on HEYM, although the presence of S type strains cannot be ruled out in this species since primary cultures of bovine samples are usually performed only on this medium. Most of the ovine Map isolates (nine out of ten) were of the S type and difficult to grow in primary cultures, but a C type strain (in one case out of ten) was also detected in sheep. Goats appeared to be affected by both C and S types, much as has been found in other studies (10, 12, 15).

There is a certain discrepancy in the distribution patterns according to host species that were found in this study and the results reported by other authors (9, 12). The latter conclude that C type strains are commonly isolated from sheep in Europe, while in the present study only 10% of the sheep isolates were found to be of C type. This could be for the same reason that was discussed above with regard to the fact that only type C strains were isolated from cattle in the present study. It is likely that our isolates might represent a less biased sample of strains infecting Spanish sheep since we used L-J and 7H11 for primary isolation. According to Juste et al. (7), L-J might improve primary isolation of ovine strains by about 90%, but decrease primary isolation of bovine strains by approximately 37% in relation to HEYM. The other authors either did not report the media used for primary isolation (12) or used HEYM (9). A larger, more specifically designed study that avoids primary isolation bias is needed in order to draw any definitive conclusions on this subject.

It has been reported that culture of Map from bison samples is more difficult than from cattle but easier than from sheep, and that it can be improved by the use of HEYM without sodium pyruvate (13). In the case of the Indian isolates, such differences were not noticed because only HEYM without added pyruvate was used for primary isolation. The observation of Map colonies produced from sheep samples cultured in HEYM (3, 4, 11) contradicts the findings of some other authors, who reported that the culture of MAP colonies from sheep samples was unrewarding (7, 13). These findings led to the suspicion that a strain different from S could be involved in the Indian cases in the present study, probably a C strain. However the molecular methods used in this study proved that they were B type strains, which had previously only been found in bison from Montana (USA). Nevertheless, the preliminary results from RFLP analysis of genomic DNA indicate that these isolates are not the same as those from bison and probably represent a new biotype, as yet not seen outside India (Whittington, unpublished observations).

In summary, this study confirms the existence of Map genetic differences related to geographic and host factors that would help to explain the variable success rates in the primary isolation of Map from some host species on some culture media in previous reports. These differences could also prove useful for the epidemiological tracing of new paratuberculosis cases.

Acknowledgements

We thank V. Kumar and S. Hajra, from the College of Veterinary Science and Animal Husbandry of C.S. Azad University of Agriculture and Technology (Kampur, Mathura), for performing primary cultures, and A.K. Bhatia, Director of the Central Institute for Research on Goats, for providing necessary facilities. Samples from Castilla-León were provided by the Pathology Unit of the Faculty of Veterinary Medicine of León. The Centro Nacional de Microbiología of the Instituto de Salud Carlos III kindly made the non-Map mycobacteria identification. We also thank Mertxe Bascones for technical help at NEIKER. While conducting this study, I. Sevilla held a fellowship from the Department of Agriculture and Fisheries, and currently holds a fellowship from the Department of Industry of the Basque Government.
Caractérisation moléculaire de souches de *Mycobacterium avium* sous-espèce *paratuberculosis* issues de différents hôtes et régions du monde

Résumé

Les différences génétiques entre 38 isolats de *Mycobacterium avium* sous-espèce *paratuberculosis* issus de bovins, d’ovins, de caprins et de bisons de différentes régions d’Espagne, d’Inde et des États-Unis d’Amérique ont été mises en évidence au moyen de l’amplification en chaîne par polymérase IS1311 par analyse de l’endonucléase de restriction. Parmi les isolats provenant d’Espagne, les huit isolats bovins, trois des six isolats caprins et l’un des dix isolats ovins appartenendaient au type C, tandis que les neuf isolats ovins et les trois isolats caprins restants étaient du type S. Les cinq isolats ovins et les cinq isolats caprins prélevés en Inde étaient du type B, de même que les trois isolats à partir de bisons (*Bison bison*) aux États-Unis d’Amérique. Les différences génétiques entre isolats de *M. avium paratuberculosis* mises en évidence dans cette étude, liées tant à la géographie qu’aux espèces hôtes, s’avèrent potentiellement utiles pour déterminer l’origine épidémiologique des nouveaux isolats de l’agent de la paratuberculose.

Mots-clés

Tipificación molecular de cepas de *Mycobacterium avium* subespecie *paratuberculosis* de diferentes huéspedes y regiones

Resumen

Los autores describen una experiencia en la que se empleó la reacción en cadena de la polimerasa (PCR) y seguidamente un análisis por endonucleasas de restricción para amplificar la secuencia de inserción (IS) 1311 y detectar diferencias genéticas entre 38 cultivos de *Mycobacterium avium* subesp. *paratuberculosis* (*Map*) procedentes de muestras tomadas a bovinos, ovejas, cabras y bisontes de distintas regiones de España, la India y los Estados Unidos de América. En España, las ocho muestras tomadas de bovinos, tres de las seis de cabra y una de las diez de oveja correspondieron al tipo C, mientras que las nueve ovinas y tres caprinas restantes fueron del tipo S. En la India, las cinco muestras de oveja y seis de las de cabra resultaron del tipo B, al igual que todas las muestras (tres) obtenidas en bisontes (*Bison bison*) de los Estados Unidos.
Estos resultados demuestran que existen diferencias genéticas entre las muestras de Map, relacionadas con factores geográficos o con el tipo de huésped, que podrían ser útiles para seguir el rastro epidemiológico de las nuevas muestras de paratuberculosis que se vayan aislando.

Palabras clave

References

