Mycobacterium fortuitum from lesions of slaughtered pigs in Ibadan, Nigeria

S.I.B. Cadmus (1), H.K. Adesokan (1), M. Okker (2) & K. Jahans (2)

(1) Department of Veterinary Public Health & Preventive Medicine, University of Ibadan, Ibadan, Nigeria
(2) TB Diagnosis Section, Veterinary Laboratories Agency, Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom

Submitted for publication: 2 September 2008
Accepted for publication: 9 December 2009

Summary

To ascertain the cause of tuberculous-like lesions in pigs slaughtered in a local abattoir in Ibadan (south-western Nigeria), a total of 516 pigs were inspected over a period of four months, 18 of which had gross lesions suggestive of tuberculosis at post-mortem. Mycobacterial culture and molecular typing (GenoType® Mycobacterium CM [Common Mycobacteria] assay) analysis were used to identify and confirm the mycobacteria species responsible for these lesions.

Results show that 2.3% (12/516) of the animals screened were infected with mycobacteria; *Mycobacterium fortuitum* was confirmed in 33.3% (4/12) of these cases.

As far as the authors are aware, this is the first report confirming the isolation of *M. fortuitum* in slaughtered pigs in Nigeria. There is a need to improve on necessary preventive and control measures that will reduce potential sources of mycobacterial infections in pig-rearing herds. These infections may also have public health implications, especially to workers in the pig industry.

Keywords

Introduction

Tuberculosis in pigs causes large economic losses to farmers all over the world (22). The common causes of tuberculosis in pigs are members of the *Mycobacterium tuberculosis* and *M. avium* complexes. However, other species of mycobacteria, known as non-tuberculous mycobacteria (NTM), may participate in the formation of tuberculous-like lesions in domestic and wild pigs (18, 22). These species, which are also known as atypical or opportunistic mycobacteria or conditionally pathogenic mycobacteria, are, as follows:

- *M. fortuitum*
- *M. gordonae*
- *M. terrae*
- *M. chelonae*
- *M. smegmatis*
- *M. phlei*
- *M. scrofulaceum*.

One of the most commonly notified NTM sources for domestic pigs is drinking water for animals (18). Water may not only become a transport medium, but also serve as the main reservoir for the majority of NTM species. Contaminated bedding, particularly straw, sawdust, wood shavings, shredded paper and other materials made of wood, may be significant NTM sources for pigs (15, 19, 21, 27). Another major source of NTM may be contaminated
feed and water (5, 18, 22, 29, 30), peat and kaolin fed as supplements (17, 20, 27, 28, 29, 30), and soil in pens (14, 18). Mycobacteria may spread through various invertebrate species (15), including earthworms (11), dipterous insects (7, 8, 9, 10, 13, 16), cockroaches (11) and beetles (12, 13).

In industrialised countries, where the incidence of tuberculosis has decreased or stabilised, rates of NTM associated with lung infections now exceed those of tuberculosis. In African countries, where the prevalence of human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) are high, recent studies have indicated that NTM may play a much larger role in tuberculosis-like disease than previously assumed (2). Therefore, the identification of the mycobacteria responsible for a disease and the discrimination of environmental from pathogenic species are relevant diagnostic issues that have important ramifications for the treatment of patients (24, 31). Knowing that identifying numerous species of mycobacteria through classical biochemical methods is time-consuming and error prone, the introduction of molecular biological methods which greatly improve the speed and accuracy of the process becomes imperative (25). Therefore, it is important to explore modern molecular biological methods which will provide accurate identification of these organisms. GenoType® Mycobacterium CM (Common Mycobacteria) assay (Hain test) has become an invaluable molecular method for differentiating members of the mycobacteria species.

In the past, several cases of tuberculous-like lesions have been observed in cattle and pigs during post-mortem inspections in Nigerian abattoirs; however, efforts have only been directed at identifying the incriminating agents in cattle (3, 4), with none documented in pigs. Because of this information gap and the public health implications of mycobacteria, the authors sought to confirm and characterise the species of mycobacteria responsible for tuberculous-like lesions in slaughtered pigs in a local abattoir in Ibadan, south-western Nigeria.

Materials and methods

Study site

The study was conducted in Bodija Municipal Abattoir located in Ibadan, south-western Nigeria. Ibadan lies between 7° 32´ N and 3° 54´ E; it is cosmopolitan in nature and is the biggest city in Nigeria. The abattoir is located in Ibadan North Local Government Area, one of the 10 local governments in Ibadan; it is the biggest in the state and serves as a major source of meat and pork, as well as other animal products, to the neighbouring areas in Ibadan city.

Duration of the study and population of animals screened

Samples were collected over a period of four months between March and June 2005, during which time 516 pigs of different breeds and ages (out of a total of 1,440 slaughtered during this period) were inspected for gross lesions suggestive of tuberculosis (Table I).

Post-mortem examination

This involved detailed examination of the submaxillary, cervical, hepatic, bronchial, mediastinal and mesenteric lymph nodes and other parenchymatous organs; including the lungs, liver and spleen. These were palpated and incised for evidence of tuberculous-like lesions. These lesions were collected, frozen at –4°C (Table I) and later cultured.

Detection of mycobacteria

The method used to process the lesions was based on a method previously described by Cadmus et al. (3). Firstly, the fat from each of the fresh specimens was trimmed away and the tissues were ground in a pestle and mortar with the addition of sterile distilled water. Equal amounts (5 ml) of

<table>
<thead>
<tr>
<th>Month</th>
<th>Number of pigs slaughtered</th>
<th>Number of pigs examined</th>
<th>Lesions collected</th>
<th>Number of pigs with suspected TB lesions</th>
<th>Number of pigs confirmed positive for mycobacteria by culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>426</td>
<td>133</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>April</td>
<td>485</td>
<td>196</td>
<td>Lymph nodes, spleen</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>May</td>
<td>302</td>
<td>107</td>
<td>Lymph nodes</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>June</td>
<td>227</td>
<td>80</td>
<td>Lymph nodes, attachment of nodules to the spine</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1,440</td>
<td>516</td>
<td>18</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

TB: tuberculosis
The species isolated was determined by referring to the supplied interpretation chart. A band present on the strip correlates to the reaction zones which are specific for different probes.

Results

From the 516 animals inspected, 3.48% (18/516) had lesions suggestive of tuberculosis in different lymph nodes and organs. Culture results from these suspected tuberculous animals showed that 66.67% (12/18) of them had positive growth (Table I) within the first week. The results of the GenoType® Mycobacterium CM assay are shown in Table II. In 5 cases the assay failed to detect mycobacteria, in 3 cases it detected unspecified mycobacteria and in 4 cases it identified the mycobacteria as *M. fortuitum*. The four samples (i.e. P1, P2, P7 and P11) identified as *M. fortuitum* had bands visible for probes 7 and 14 on each strip (Fig. 1). The conjugate control, universal control and genus control were present for all samples, with the exception of genus control for sample P11.

Discussion

The results confirmed the isolation of *M. fortuitum* as the causative agent of the tuberculous-like lesions seen in some of the slaughtered pigs. This was also re- emphasised by the short duration of the culture, which was within one week, and their smooth colony morphology. The discriminative
ability of the GenoType® assay to differentiate organisms belonging to the genus *Mycobacterium*, which has also been noted by Richter et al. (25, 26), provides a very good basis for the confirmation of *M. fortuitum* in these animals. The inability of the test to identify three of the isolates (classified as unspecified mycobacteria) further demonstrates the need for the inclusion of a second test (termed additional species [AS] on the GenoType® assay) which, incidentally, was not used in the present study. This test identifies species that are found more infrequently, such as *M. simiae, M. mucogenicum* and *M. celatum*. Thus, serial use of the two strips would have helped in identification of a larger spectrum of the mycobacteria classified as unspecified in the infected animals. Regarding the three unspecified mycobacteria, P5 had bands visible for probes 5, 6, 7, 10 and 14, which are not recognised on the CM kit. P9 had bands visible for probes 7, 10, and 14, which again are not recognised by the CM kit, and P6 had band 10 present, which may be further identified by using the AS kit. However, to confirm these other species, it would be necessary to use the GenoType® AS kit. This would be expensive, but would be worth exploring for further studies.

Findings from this study are similar to those established by Pavlik et al. (22), who linked the isolation of *M. fortuitum* to certain external environmental conditions. Contaminated water has been confirmed not only to be a good transport medium, but the main reservoir for the majority of NTM in Ibadan, where water supply systems on farms are poor, most farmers resort to unchlorinated water sources and sometimes store water in reservoir tanks which may be contaminated with NTM since mycobacteria tolerate wide pH and temperature ranges (6, 23). Again, most of these pigs are kept on contaminated bedding which consists of wood shavings, sawdust, shredded paper and other wood materials that are known to be significant sources of *M. fortuitum* for pigs (15, 19, 21, 27). Another known source of *M. fortuitum* which these pigs have been exposed to is contaminated feed supply (22), which has been confirmed to be responsible for the spread of this pathogen. Farmers in Ibadan feed their pigs leftover foods and industrial waste, and, occasionally, the pigs are even allowed to graze on dump sites, which are good sources for contaminated food items. Moreover, pest control is not routinely carried out in most piggeries in Ibadan and the problem of insect/fly disturbance is widespread; consequently, pigs can become infected because *M. fortuitum* can easily spread through the various invertebrate species (11, 15) — including dipterous insects (7, 8, 9, 10, 13) and cockroaches (11) — that are commonly found in piggeries.

The above risk factors are major environmental issues which most of the pigs slaughtered in Nigerian abattoirs are exposed to. It follows, therefore, that the livestock attendants, butchers, meat processors and veterinarians who handle these animals are also exposed to the risk of infection. Such exposure may have been the cause of the *M. fortuitum* infection reported in an eight-year-old boy with ocular tuberculosis and a fourteen-year-old boy with osteomyelitis in Ibadan (1). These two human cases are important since, in some cases, young children help out in piggeries with poor environmental and hygienic standards. The correlation of hygiene standards and risk of infection is obvious from the findings of Pavlik et al. (22), who noticed a remarkable decline in pig infection due to *M. fortuitum* and other NTM after a consistent improvement in the hygienic conditions of pigs reared and slaughtered in a region of the Czech Republic. Of major importance is the co-infection of *M. fortuitum* and other NTM with HIV and AIDS, both of which are on the increase in Nigeria (32) among all groups, including the working population. It is extremely important, therefore, that environmental conditions in piggeries improve so that livestock workers are not exposed to these pathogens.

Conclusions

In conclusion, therefore, *M. fortuitum* should be considered to be a possible cause of any tuberculous-like lesions found in slaughtered pigs during post-mortem inspections in Nigeria. However, given the public health importance of this problem, further work in the area of molecular characterisation of the causes of tuberculous and tuberculous-like lesions in the larger pig population of the
country is required. Again, there is a need to improve the water and feed supplies of the pigs reared in the country as well as the management and hygienic conditions they are exposed to. Finally, since *M. fortuitum* is an opportunistic infection in HIV and AIDS patients, livestock workers with such health problems should take extra precautions to ensure that they work in hygienic conditions that do not expose them to environmental mycobacterial infections.

Acknowledgements

The authors sincerely appreciate the assistance of Dr Akeem Adeniran and Joshua Utulu of the TB Research Laboratory of the Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria during the field work. They also appreciate the technical support of Danny Worth and Jemma Brown during the GenoType® Mycobacterium CM assay work at the Veterinary Laboratories Agency (VLA), United Kingdom. Work at VLA was funded by the Department for Environment, Food, and Rural Affairs.

Détection de *Mycobacterium fortuitum* dans des lésions de porcs abattus à Ibadan, Nigeria

S.I.B. Cadmus, H.K. Adesokan, M. Okker & K. Jahans

Résumé

Des lésions tuberculeuses ayant été trouvées chez des porcs abattus dans un abattoir municipal d’Ibadan (sud-ouest du Nigeria), une série d’inspections a été conduite pendant une période de quatre mois, au cours de laquelle 516 porcs ont été examinés, dont 18 présentaient à l’examen post-mortem des lésions macroscopiques évocatrices de tuberculose. L’identification de l’espèce de mycobactérie responsable de ces lésions a été réalisée par culture et confirmée au moyen d’une méthode de caractérisation moléculaire (épreuve GenoType® Mycobacterium CM [Common Mycobacteria]). Les résultats montrent que 2,3 % (12/516) des animaux testés étaient infectés ; la présence de *Mycobacterium fortuitum* a été confirmée dans 33,3 % (4/12) de ces cas.

À la connaissance des auteurs, il s’agit du premier isolement confirmé de *M. fortuitum* chez des porcs abattus au Nigeria. Les mesures de prévention et de lutte devront être renforcées afin de limiter les sources potentielles d’infection mycobactérienne dans les élevages porcins. Ces infections présentent également un risque pour la santé publique, en particulier pour les travailleurs du secteur porcin.

Mots-clés

Presencia de *Mycobacterium fortuitum* en lesiones de cerdos sacrificados en Ibadan (Nigeria)

S.I.B. Cadmus, H.K. Adesokan, M. Okker & K. Jahans

Resumen
A fin de esclarecer la causa de lesiones tuberculosas en cerdos sacrificados en un matadero local de Ibadan (región Sudoccidental de Nigeria), se examinaron durante cuatro meses un total de 516 animales, en 18 de los cuales se observaron, en el curso del examen post-mortem, lesiones visibles que hacían pensar en una tuberculosis. Para identificar la especie responsable de las lesiones y confirmar su presencia se procedió a un cultivo micobacteriano y a una tipificación molecular (análisis genotípico GenoType® Mycobacterium CM [Common Mycobacteria]).

Los resultados pusieron de manifiesto que un 2,3% (12/516) de los animales examinados estaban infectados por micobacterias. En el 33,3% (4/12) de esos casos, el microorganismo en cuestión era *Mycobacterium fortuitum*.

Hasta donde saben los autores, esta es la primera vez que se confirma el aislamiento de *M. fortuitum* en cerdos sacrificados en Nigeria. Se impone ahora mejorar las indispensables medidas de prevención y control para reducir las posibles fuentes de infección micobacteriana en las piaras de cerdos reproductores. Estas infecciones también pueden tener consecuencias de salud pública, especialmente al afectar a los trabajadores de la industria porcina.

Palabras clave

References

