

Federal Department of Economic Affairs, Education and Research EAER

Agroscope

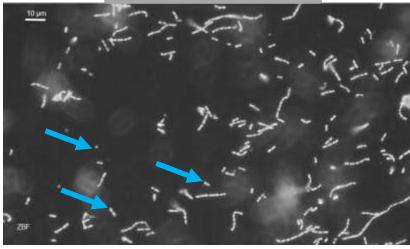
Swiss Bee Research Center

Resurgence of European foulbrood in Switzerland: epidemiology and diagnosis

J.D. Charrière; D. Grossar

The 2nd of October 2017, Istanbul

European Foulbrood (EFB): Pathogenesis


Bacterial brood disease of honey bees

Melissococcus plutonius

(Enterococcaceae; White, 1912)

- lanceolate cocci
- non-spore-forming



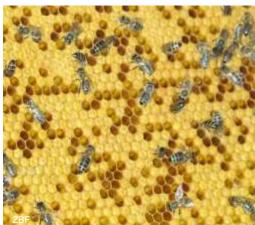
European Foulbrood (EFB): Pathogenesis

Melissococcus plutonius

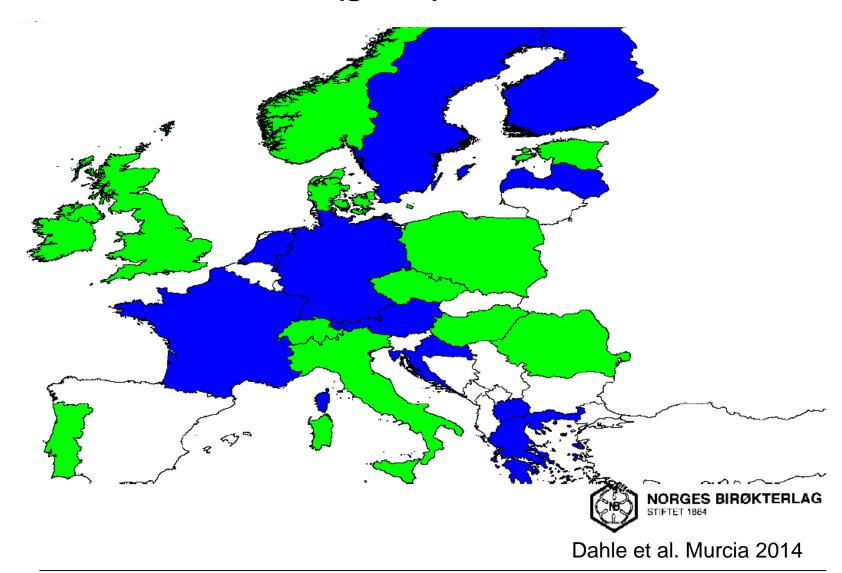
- infects the intestinal tract of young honey bee larvae
- Competition for nutrients
- Secondary infections
 - Paenibacillus alvei
 - Enterococcus faecalis
 - Achromobacter eurydice

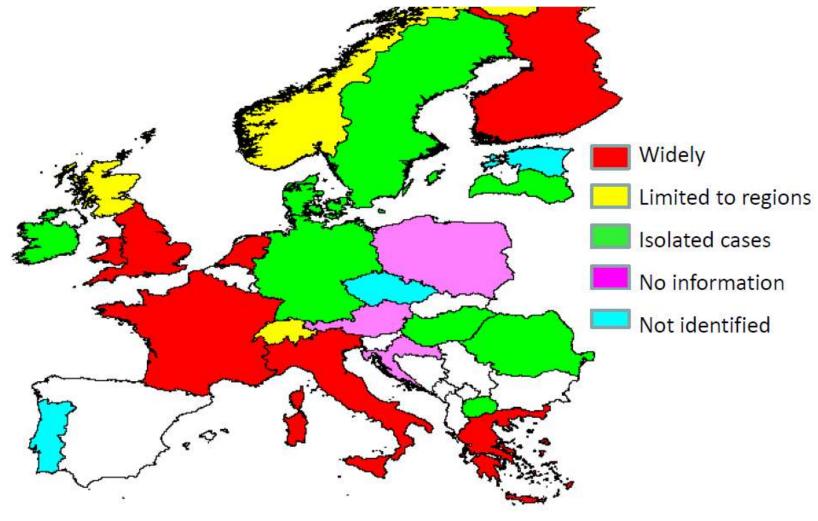
Forsgren, 2010

Unique Service Servic


How to recognize colonies affected by EFB?

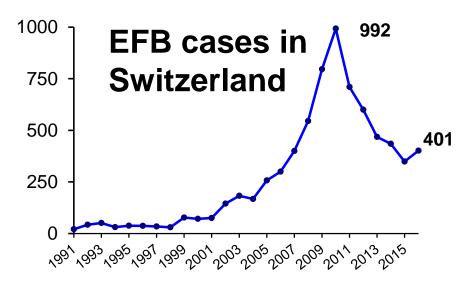
- Brood appearance:
 - colour change
 - position
 - flaccid/decomposed
 - scales
- Foul/sour odor
- Hygienic behavior
 - → Brood area patchy

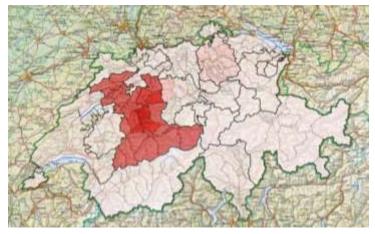




Notifiable disease (green)

Distribution within countries




Dahle et al. Murcia 2014

European foulbrood (EFB)

Prevalence in Switzerland

- Until 2002 the number of EFB-cases registered in Switzerland was below 80/year
- 992 cases in 2010 -Since then decreasing tendency
- Most cases are detected in the canton of Bern and Thurgau



Sanitation measures

- Destruction of all colonies with clinical symptoms
- Restriction zones of 1 km radius

European Foulbrood (EFB): Control measures applied in CH

- Notifiable disease in Switzerland
- Routine checks by bee inspectors
- Restriction zone of 1 km radius
- Destruction of diseased colonies
- > Total sanitation of the apiary if more than 50% of the colonies are affected (killing or artificial swarms)
- Visual check of all colonies within the restriction area by bee inspectors
- Follow-up checks by the bee inspector after sanitation (also next Spring)
 - Control measures are costly

V

European Foulbrood (EFB): Diversity of *M. plutonius*

Journal of Apicultural Research 32(2): 80-88 (1993)

The cultural characteristics and serological relationships of isolates of Melissococcus pluton

M F ALLEN; B V BALL

FEMS Microbiology Letters 173 (1999) 311-318

Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis

Steven Philip Djordjevic *, Lisa Annette Smith, Wendy Ann Forbes, Michael Alan Hornitzky

NSW Agriculture, Microbiology and Immunology Section, Ekzabeth Masarthur Agricultural Institute, Private Mail Bog R. Comdon, N.S.W. 2570, Australia

Received 29 October 1998; received in revised form 27 January 1999; accepted 4 February 1999

M. plutonius isolates were thought to be homogenous...

J. gen. Microbiol. (1962), 28, 385-391 Printed in Great Britain

> Cultural Characters of Streptococcus pluton and its Differentiation from Associated Enterococci

By L. BAILEY AND A. J. GIBBS Rothamsted Experimental Station, Harpenden, Hertfordshire

(Received 24 March 1961)

SUMMARY

Strains of Streptococcus pluton (White) from widely separate parts of the world were very similar culturally and serologically and differed greatly in

V

European Foulbrood (EFB): Diversity of *M. plutonius*

Contents lists available at ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

Short Communication

Typing of *Melissococcus plutonius* isolated from European and Japanese honeybees suggests spread of sequence types across borders and between different *Apis* species

Daisuke Takamatsu ^{a,b,a}, Keiko Morinishi ^c, Rie Arai ^{b,d}, Aya Sakamoto ^c, Masatoshi Okura ^a, Makoto Osaki ^a

OPEN & ACCESS Freely available online

PLOS one

Diversity of *Melissococcus plutonius* from Honeybee Larvae in Japan and Experimental Reproduction of European Foulbrood with Cultured Atypical Isolates

Rie Arai^{1,3}, Klyoshi Tominaga³, Meihua Wu⁴, Masatoshi Okura⁵, Kazutomo Ito⁶, Naomi Okamura⁷, Hidetaka Onishi⁸, Makoto Osaki⁵⁰, Yuya Sugimura⁹, Mikio Yoshiyama⁹, Daisuke Takamatsu^{2,5}*

GENOME ANNOUNCEMENT

Complete Genome Sequence of *Melissococcus plutonius* DAT561, a Strain That Shows an Unusual Growth Profile and Is Representative of an Endemic Cluster in Japan

Kayo Okumura, A.D. Rie Arai, C.d. Masatoshi Okura, * Teruo Kirikae, * Daisuke Takamatsu, C.d. Makoto Osaki, ** and Tohru Miyoshi-Akiyama D.

...but new studies contradict this opinion.

OPEN

The ISME Journal (2014), 1-10 o 2014 international Society for Microbial Ecology. All rights reserved 1751-7362/14

ORIGINAL ARTICLE

Molecular epidemiology and population structure of the honey bee brood pathogen *Melissococcus* plutonius

Giles E Budge¹, Mark DF Shirley², Benjamin Jones¹, Emiline Quill¹, Victoria Tomkies¹, Edward J Feil³, Mike A Brown¹ and Edward G Haynes^{1,4} environmental microbiology reports

Environmental Microbiology Reports (2013)

doi:10.1111/1758-2229.1205

A typing scheme for the honeybee pathogen Melissococcus plutonius allows detection of disease transmission events and a study of the distribution of variants

Edward Haynes, 1.2 Thorunn Helgason, 1* J. Peter W. Young, 1 Richard Thwaites 2 and Giles E. Budge²

genetic diversity (Allen and Ball, 1993; Djordjevic et al., 1999). Indeed, isolates from the UK and Australia have proven indistinguishable by RFLP (Restriction Fragment

Waltilocus Sequence Typing (MLST)

Multilocus sequence typing scheme (MLST) for *M. plutonius* developed recently (Haynes *et al.*, 2013).

...is a technique for the typing of bacterial isolates using DNA sequences of multiple housekeeping genes.

In total 148 Swiss samples analyzed:

97 *M. plutonius* isolates (2005-2007)

51 M. plutonius isolates (2013)

Summary

The 148 analyzed Swiss *M. plutonius* isolates belong to 13 different Sequence Types:

 108 isolates could be assigned to Sequence Types, identical to isolates already described

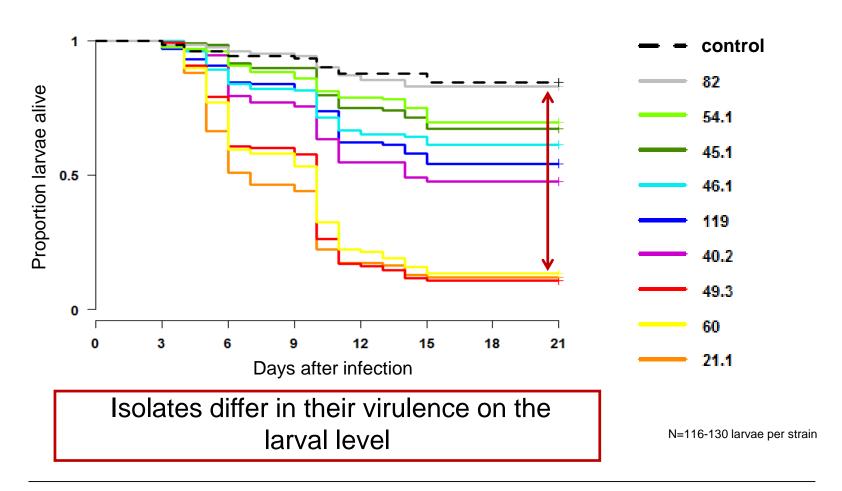
(Haynes, 2013; Takamatsu, 2014; Budge, 2014)

40 isolates belong to six novel *M. plutonius* Sequence
Types identified for the first time in this study

 No clear pattern in the distribution of the different sequencing types

V

Comparison of the virulence between strains: *in vitro* larval rearing (Aupinel et al., 2005)


- Transferring young larvae into plastic cups with food
- Infection with *M. plutonius* added to artificial diet (sugar + royal jelly)
- Rearing in an incubator under constant conditions in the laboratory
- Daily feeding and monitoring of the mortality till emergence

Virulence of *Melissococcus plutonius* isolates

European foulbrood (EFB)

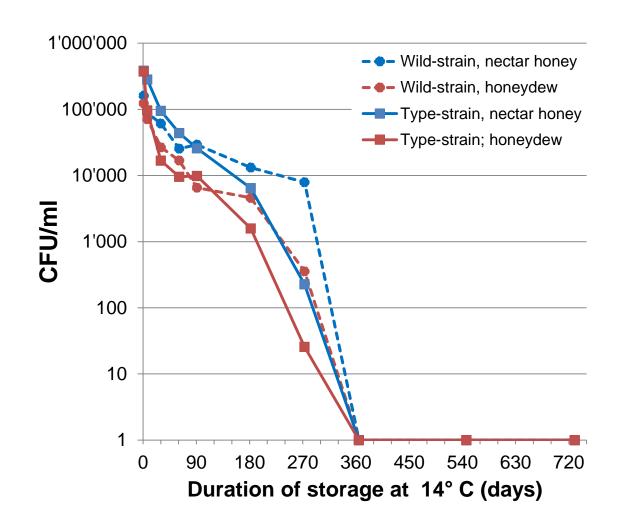
Environment

Colony and apiary density

Beekeeping practices, sanitation measures

M. plutonius

Social immunity



Individual immunity

Survivorship of *M. plutonius* in honey

Thank you for your attention.

<u>jean-daniel.charriere@agroscope.admin.ch</u> www.apis.admin.ch