Rapid and Accuracy Diagnosis of Highly Pathogenic Avian Influenza (H5N8) Virus used for the Control of the Outbreak in the Republic of Korea

Third Global Conference of OIE Reference Centres
Incheon(Seoul), Korea, 14-16 October 2014

Lee, Youn-Jeong
Avian Influenza Lab.
Animal and Plant Quarantine Agency
Republic of Korea
Organization of QIA

QIA (Animal and Plant Quarantine Agency)

General Service Division

Planning & Coordination Division

Emergency Preparedness and Response Center

Dep. Animal Disease Control & Quarantine

- Animal Disease Control
- Animal Quarantine
- Veterinary Epidemiology
- Animal Disease Diagnostic
- Import Risk Assessment
- Animal Protection & Welfare
- Veterinary Pharmaceutical
- Veterinary Drugs & Biologics

Dep. Plant Quarantine

- Plant Quarantine
- Export Management
- Risk Management
- Plant Pest Control

Dep. Animal & Plant Health Research

- Research Planning
- Bacterial Disease
- Foot and Mouth Disease
- Viral Disease
- Avian Disease
- Foreign Animal Disease
- Plant Quarantine Tech.

- 3 Department, 22 Division,
- 6 Regional Offices

Incheon Regional Office
Yeongnam Regional Office
Jungbu Regional Office
Seoul Regional Office
Honam Regional Office
Jeju Regional Office
Control Measures for HPAI

- **Stamping-out policy (culling)**
 - Prompt depopulation: infected farm, farms within 500m radius
 - Pre-emptive culling: within 3 km radius, dangerous contact

- **Zoning and movement restriction**
 - 500 m radius: contaminated zone
 - 500m – 3 km: protection zone
 - 3 km – 10km: surveillance zone

- **Vaccination prohibited**

- **Movement restriction were lifted 30 days after the last culling**
H5 HPAI Epidemics in Korea

- 03/04 H5N1
 - 17 farms
 - 8 Dk farms
 - 9 Ck farms

- 06/07 H5N1
 - 7 farms
 - 2 Dk farms
 - 4 Ck farms
 - 1 Qa farm

- 2008 H5N1
 - 33 farms
 - 6 Dk farms
 - 21 Ck farms
 - 6 Dk/Ck mixed

- 10/11 H5N1
 - 53 farms
 - 33 Dk farms
 - 18 Ck farms
 - 1 Qa, 1 Ph

- 2014 H5N8
 - 31 farms
 - 19 Dk farms
 - 11 Ck farms
 - 1 Gs
Outbreak of H5N8 HPAI in Korea

Poultry
- Date: 2014. 1. 16
- Region: Gochang in Jeonbuk(JB) province
- Farm: breeder duck farm
 - 20-53 week-old breeder ducks
 - 16,000 birds
- Reporting: farmer → regional veterinary office → QIA
- Clinical signs:
 - Decrease of egg production (above 50%)
 - Increase of death (1-2 bird → 7 birds)
 - Depression

Wild birds
- Date: 2014. 1. 17
- Region: Donglim reservoir near the index case farm
- Reporting: QIA team for epidemiological investigation
- hundreds of dead Baikal Teal in Donglim reservoir

Data: Epidemiological Division of QIA, 2014
Isolation of H5N8 Viruses in Poultry & Wild Birds

- **H5N8 outbreaks:** 31 confirmed cases/37 suspect cases in poultry
- **H5N8 virus:** 278 viruses

<table>
<thead>
<tr>
<th></th>
<th>No. of cases</th>
<th>No. of virus isolation</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry</td>
<td>927</td>
<td>231</td>
<td>696</td>
</tr>
<tr>
<td>Wild bird</td>
<td>595</td>
<td>38</td>
<td>557</td>
</tr>
<tr>
<td>Environment</td>
<td>192</td>
<td>9</td>
<td>183</td>
</tr>
<tr>
<td>Total</td>
<td>1,714</td>
<td>278</td>
<td>1,436</td>
</tr>
</tbody>
</table>

170,153 samples 2014. 10. 12.

Weeks number, 2014

- **Poultry**
- **Wild Birds**

![Map of South Korea with regions colored to indicate H5N8 outbreaks](image)
Affected species in poultry and wild birds

- H5N8 viruses from poultry (231 cases)
 - Duck (174): 75%
 - Chicken (48): 21%
 - Others (9): 4%

- H5N8 viruses from wild birds (38 cases)
 - Dead bird (20)
 - Captured live bird (9): Mallard(3), spot-billed duck(2), common teal(4)
 - Feces (9)

2014.10.12
Avian Influenza Viruses in Eastern China during 2009-2011

- **H5N2**: A/duck/Eastern China/1111/2011
- **H5N8**: A/duck/Jiangsu/k1203/2010
- **H11N9**: A/environment/Jiangxi/28/2009

Group A
- Wild birds: 27 cases
- Poultry: 18 cases

Group B
- Wild birds: 1 case
- Poultry: 1 case

- Layer Chicken farm, Kumamoto prefecture in Japan (4.13)
- Duck in LBM, Zhejiang of China 2013

EID online (5.6)

HPAI H5N8 virus of Korea, 2014

- Total 47 viruses were analyzed in all 8 segments
Procedures for HPAI Suspected Cases

Farmer
- Recognize clinical signs
- Report to Provincial Veterinary Service

Provincial Veterinary Service
- History taking and sampling
- Screening test using antigen detection kit (Type A)
- Transportation samples to QIA

QIA
- Direct RNA detection by RT-PCR, real-time RT-PCR
- Virus isolation by egg inoculation (HA, RT-PCR & Sequencing)
- Assessment of pathogenicity
- ELISA, HI test
The Application of Antigen Detection Kit

- It was developed in 2004 during first H5N1 HPAI outbreak
- Detection Limit: 0.06-0.13 HA unit, $10^{3.9-4.2}$ EID$_{50}$/0.1ml
The Application of Antigen Detection Kit

<table>
<thead>
<tr>
<th>Suspected cases</th>
<th>Species</th>
<th>Virus isolation</th>
<th>Type A</th>
<th>Suspected cases</th>
<th>Species</th>
<th>Virus isolation</th>
<th>Type A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>16th</td>
<td>Chicken</td>
<td>+</td>
</tr>
<tr>
<td>2nd</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>17th</td>
<td>Duck</td>
<td>+</td>
</tr>
<tr>
<td>3rd</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>18th</td>
<td>Chicken</td>
<td>-</td>
</tr>
<tr>
<td>4th</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>19th</td>
<td>Duck</td>
<td>+</td>
</tr>
<tr>
<td>5th</td>
<td>Chicken</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>20th</td>
<td>Chicken</td>
<td>-</td>
</tr>
<tr>
<td>6th</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>21th</td>
<td>Chicken</td>
<td>+</td>
</tr>
<tr>
<td>7th</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>22th</td>
<td>Chicken</td>
<td>+</td>
</tr>
<tr>
<td>8th</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>23th</td>
<td>Duck</td>
<td>+</td>
</tr>
<tr>
<td>9th</td>
<td>Duck</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>24th</td>
<td>Chicken</td>
<td>+</td>
</tr>
<tr>
<td>10th</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>25th</td>
<td>Chicken</td>
<td>+</td>
</tr>
<tr>
<td>11th</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>26th</td>
<td>Duck</td>
<td>+</td>
</tr>
<tr>
<td>12th</td>
<td>Chicken</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>27th</td>
<td>Duck</td>
<td>+</td>
</tr>
<tr>
<td>13th</td>
<td>Duck</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>28th</td>
<td>Chicken</td>
<td>+</td>
</tr>
<tr>
<td>14th</td>
<td>Chicken</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15th</td>
<td>Chicken</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND: Not done or no information from regional Veterinary Service

- **Field:** Samples were oropharyngeal and cloacal swab at the farm
- **Lab:** Samples were tissues of dead birds

Total: 23/28, 8/9, 23/28
Laboratory Test for AIV Diagnosis

Direct RNA Detection
- Standard RT-PCR & Sequencing analysis
- Real time RT-PCR

Virus Isolation & Identification
- Egg Inoculation, HA
- RT-PCR & Sequencing Analysis
- Pathogenicity test in Animal

Serological Test
- AGID
- C-ELISA
- HI test
Direct RNA Detection by RT-PCR

- Materials & Methods
 - AIV multi RT-PCR kit (in-House; Intron Co.): premix with specific Primer sets
 - Traditional RT-PCR: H typing and N typing

![RT-PCR Electrophoresis Images](Image)

H5
- M, NP gene
- Negative

N8
- M, NP and H5 + N8 positive

Product of H5 cleavage site

Pathotyping (sequencing)

AIV-

H5 or H7 AIV
Comparison of RT-PCR & real time RT-PCR

<table>
<thead>
<tr>
<th>H5N8 Virus*</th>
<th>Real time RT-PCR**</th>
<th>Traditional RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Virus dilution)</td>
<td>M gene (Ct)</td>
<td>H5</td>
</tr>
<tr>
<td>H5N8 (10^-1)</td>
<td>17.55</td>
<td>20.04</td>
</tr>
<tr>
<td>H5N8 (10^-2)</td>
<td>24.18</td>
<td>27.04</td>
</tr>
<tr>
<td>H5N8 (10^-3)</td>
<td>28.51</td>
<td>32.06</td>
</tr>
<tr>
<td>H5N8 (10^-4)</td>
<td>32.17</td>
<td>N/A</td>
</tr>
<tr>
<td>H5N8 (10^-5)</td>
<td>34.79</td>
<td>N/A</td>
</tr>
<tr>
<td>H5N8 (10^-6)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H5N8 (10^-7)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* H5N8 virus: A/duck/Korea/Buan2/2014 (H5N8)
** real time RT-PCR: QIA use the same primer and probe set with OIE reference lab(VLA)
Setting of real time RT-PCR for pathotyping

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence of primers and probes</th>
<th>Nucleotide position</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rH5_960F</td>
<td>GGGGAATGCCCCAAAATATGT</td>
<td>960-979</td>
<td>Hofmann et al.,</td>
</tr>
<tr>
<td>rH5_1195R</td>
<td>TTTTGTCATTGAGTTGACCTTATTTG</td>
<td>1195-1224</td>
<td>QIA</td>
</tr>
<tr>
<td>rH5_Conserve_HEX_1061</td>
<td>HEX-TTGGAGCTATAGCAGTTTTTATAGAGG-BHQ</td>
<td>1061-1083</td>
<td>Hofmann et al.,</td>
</tr>
<tr>
<td>Probe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rH5_CS_FAM_1029_A*</td>
<td>FAM-AGAGARAGAAGAGGAAGAGGACT-TAMRA</td>
<td>1029-1055</td>
<td>QIA</td>
</tr>
<tr>
<td>rH5_CS_FAM_1029_B**</td>
<td>FAM-AGAGAAAGAAGAAAAAGAGACTTGT-TAMRA</td>
<td>1029-1055</td>
<td>QIA</td>
</tr>
<tr>
<td>rH5_CS_FAM_1029_C***</td>
<td>FAM-AGAGAGAAGAAGAAAGAGAGACTA-TAMRA</td>
<td>1029-1055</td>
<td>Hofmann et al.</td>
</tr>
</tbody>
</table>

*Detection for cleavage site of 2008/2010/2014 (clade 2,3,2,1, clade 2.3.4.6 <Buan2>) H5 HPAI virus of Korea

**Detection for cleavage site of 2014 (clade 2.3.4.6, Gochang1>) H5 HPAI virus of Korea

***Detection for cleavage site of 2003/2006 H5 (clade 2.5, clade 2.2) HPAI virus of Korea
Efficacy test of real time RT-PCR for pathotyping H5N8 Virus*

<table>
<thead>
<tr>
<th>H5N8 Virus* (Virus dilution)</th>
<th>Real time RT-PCR**</th>
<th>Real time RT-PCR for pathotyping</th>
<th>Traditional RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M gene (Ct)</td>
<td>H5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H5-cleavage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>H5</td>
</tr>
<tr>
<td>H5N8 (10^{-1})</td>
<td>17.55</td>
<td>20.04</td>
<td>20.40</td>
</tr>
<tr>
<td>H5N8 (10^{-2})</td>
<td>24.18</td>
<td>27.04</td>
<td>28.94</td>
</tr>
<tr>
<td>H5N8 (10^{-3})</td>
<td>28.51</td>
<td>32.06</td>
<td>32.65</td>
</tr>
<tr>
<td>H5N8 (10^{-4})</td>
<td>32.17</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H5N8 (10^{-5})</td>
<td>34.79</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H5N8 (10^{-6})</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H5N8 (10^{-7})</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* H5N8 virus: A/duck/Korea/Buan2/2014 (H5N8)
** real time RT-PCR: QIA use the same primer and probe set with OIE reference lab(VLA)
Virus Isolation by Egg Inoculation

• **Virus Isolation**
 • **Advantage**
 – Gold Standard
 – Virus available for further characterization
 – Sensitive for avian viruses
 • **Disadvantage**
 – SPF eggs expensive
 – Can be time consuming
 – Safety issues with handling infectious material
Antigenic Subtyping

• **Advantages**
 - Used to identify isolates
 - No non-specific inhibitors

• **Disadvantages**
 - Time consuming
 - Complex
 - Requires experience to interpret
 - Requires well-characterized reagents
Antibody Detection Methods

- **Agar gel immunodiffusion (AGID)**
 - Group-specific test for influenza A virus

- **Enzyme-linked immunoassay (ELISA)**
 - Alternative method to the AGID
 - Competitive ELISA was developed and applied

- **Haemagglutination inhibition test (HI)**
 - H type specific test
 - Antibodies are subtyped as H5 and H7
Antibody detection in poultry & wild birds

- Results
 - Chickens are all negative for H5 Ab
 - Some of ducks and goose are positive for H5 Ab
 - H5 antibody positive rate is unusually high in wild bird of this year

<table>
<thead>
<tr>
<th>Species</th>
<th>No. of tested farm</th>
<th>No. of tested birds</th>
<th>No. of Ab positive farms</th>
<th>No. of H5 Ab positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td>294</td>
<td>14,929</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ducks</td>
<td>403</td>
<td>21,519</td>
<td>22</td>
<td>674</td>
</tr>
<tr>
<td>Goose</td>
<td>8</td>
<td>59</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Others (mixed)</td>
<td>22</td>
<td>927</td>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>Wild birds</td>
<td>-</td>
<td>927</td>
<td>-</td>
<td>107</td>
</tr>
</tbody>
</table>
Diagnostic Procedures

Clinical signs and Gross Lesions
- Sample: Tissue of dead bird, OP·CL swab, serum
- Clinical signs: egg production ↓, depression, death
- Gross lesions: hemorrhage in ovary, necrosis in pancreas

Virus isolation
- Virus isolation by egg inoculation
 - Egg inoculation
 - HA test
- RT-PCR
- Sero-typing

Gene detection
- Direct RT-PCR & real time RT-PCR
- Sequence analysis
Acknowledgements

Emergency Preparedness and Response Center
Department of Animal Disease Control & Quarantine
 - Animal Disease Control Division
 - Veterinary Epidemiology Division
Department of Animal & Plant Health Research
 - Avian Disease Division

Regional Office for Animal Disease Control

Veterinary School