
 

Validation is a process that determines the fitness of an assay
1
, which has been properly 

developed, optimised and standardised, for an intended purpose. All diagnostic assays (laboratory 

and field assays) should be validated for the species in which they will be used. Validation includes 

estimates of the analytical and diagnostic performance characteristics of a test. In the context of this 

chapter, an assay that has completed the first three stages of the validation pathway (see Figure 1 

below), including performance characterisation, can be designated as “validated for the original 

intended purpose(s)”. To maintain a validated assay status, however, it is necessary to carefully 

monitor the assay’s performance under conditions of routine use, often by tracking the behaviour of 

assay controls over time. This ensures that the assay, as originally validated, consistently maintains 

its performance characteristics. Should it no longer produce results consistent with the original 

validation data, the assay may be rendered unfit for its intended purpose(s). Thus, a validated 

assay is continuously assessed to assure it maintains its fitness for purpose through both the 

assessment of results of the assay controls included with each run and through on-going 

assessment during routine use in the targeted population. 

Assays applied to individuals or populations have many purposes, such as aiding in: documenting 

freedom from disease in a country or region, preventing spread of disease through trade, 

contributing to eradication of an infection from a region or country, confirming diagnosis of clinical 

cases, estimating infection prevalence to facilitate risk analysis, identifying infected animals toward 

implementation of control measures, and classifying animals for herd health or immune status post-

vaccination. A single assay may be validated for one or more intended purposes by optimising its 

performance characteristics for each purpose, e.g. setting diagnostic sensitivity (DSe) high, with 

associated lower diagnostic specificity (DSp) for a screening assay, or conversely, setting DSp high 

with associated lower DSe for a confirmatory assay. 

The ever-changing repertoire of new and unique diagnostic reagents coupled with many novel 

assay platforms and protocols has precipitated discussions about how to properly validate these 

assays. It is no longer sufficient to offer simple examples from serological assays, such as the 

enzyme-linked immunosorbent assay, to guide assay developers in validating the more complex 

assays, such as nucleic acid detection tests. In order to bring coherence to the validation process 

for all types of assays, this chapter focuses on the criteria that must be fulfilled during assay 

development and validation of all assay types. The inclusion of assay development as part of the 

assay validation process may seem counterintuitive, but in reality, three of the required validation 

criteria (definition of intended purpose[s], optimisation, and standardisation) that must be assessed 

in order to achieve a validated assay, comprise steps in the assay development process. 

Accordingly the assay development process seamlessly leads into an assay validation pathway, 

both of which require fulfilment of validation criteria. Further, more detailed guidance is provided in 

a series of Recommendations for validation of diagnostic tests2 that are tailored for several 

fundamentally different types of assay (e.g. detection of nucleic acids, antibodies, or antigens) and 

provide more information on specific issues related to the validation of diagnostic assays. For 

                                                           
1  “Assay,” “test method,” and “test” are synonymous terms for purposes of this chapter, and therefore are used 

interchangeably. 
2  Available at: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.6.00_INTRODUCTION.pdf 

http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.6.00_INTRODUCTION.pdf


  

specific information for wildlife species, refer to Chapter 3.6.7 Principles and methods for the 

validation of diagnostic tests for infectious diseases applicable to wildlife. The information provided 

in chapter 3.6.7, which is specific to wildlife species, might also be useful for domestic animal test 

validation, for example, where the number or availability of samples is limited. 

All laboratories should comply with the requirements of Chapters 1.1.1 (Aquatic Manual) or 1.1.5 (Terrestrial 
Manual) on Quality management in veterinary testing laboratories. This will minimise the influence of factors that 
do not depend on the test itself such as instrumentation, operator error, reagent choice (both chemical and 
biological) and calibration, reaction vessels and platforms, water quality, pH and ionicity of buffers and diluents, 
incubation temperatures and durations, and errors in the technical performance of the assay.  

The first step in assay development is to define the purpose of the assay, because this guides all subsequent 
steps in the validation process. Assay validation criteria are the characterising traits of an assay that represent 
decisive factors, measures or standards upon which a judgment or decision may be based. By considering the 
variables that affect an assay‟s performance, the criteria that must be addressed in assay validation become 
clearer. The variables can be grouped into categories such as: (a) the sample – individual or pooled, matrix 
composition, and host/organism interactions affecting the target analyte quantitatively or qualitatively; (b) the 
assay system – physical, chemical, biological and operator-related factors affecting the capacity of the assay to 
detect a specific analyte in the sample; and (c) the test result interpretation – the capacity of a test result, derived 
from the assay system, to predict accurately the status of the individual or population relative to the purpose for 
which the assay is applied. 

Selection, collection, preparation, preservation and management of samples are critical variables in design and 
development of an assay to ensure valid test results. Other variables such as transport, chain of custody, tracking 
of samples, and the laboratory information management system are also key sources of variation/error that 
become especially important when the assay is implemented for routine testing. Integrity of experimental 
outcomes during assay development and validation is only as good as the quality of the samples used. 
Anticipating the factors that can negatively impact sample quality must precede launching an assay validation 
effort. Reference samples used in assay development and validation should be in the same matrix that is to be 
used in the assay (e.g. serum, tissue, whole blood) and representative of the species to be tested by the assay. 
The reference materials should appropriately represent the range of analyte concentration to be detected by the 
assay. Information on sample collection, preparation, preservation, management, and transport is available in 
chapters 1.1.2 and 1.1.3 of the Terrestrial Manual. 

The matrix in which the targeted analyte is found (serum, faeces, tissue, etc.) may contain endogenous or 
exogenous inhibitors that prevent some assays from working. This is of particular concern for enzyme-dependent 
tests such as polymerase chain reaction (PCR) or enzyme-linked immunosorbent assay (ELISA). Other factors 
that affect the concentration and composition of the target analyte (particularly antibody) in the sample may be 
mainly attributable to the host and are either inherent (e.g. age, sex, breed, nutritional status, pregnancy, 
immunological responsiveness) or acquired (e.g. passively acquired antibody, active immunity elicited by 
vaccination or infection). Non-host factors, such as contamination or deterioration of the sample, also potentially 
affect the ability of the assay to detect the specific targeted analyte in the sample. It is also important that 
biological reagents are free of extraneous agents that might otherwise lead to erroneous results. 

Assay performance is affected by many factors beginning with optimisation of the assay. After initial optimisation 
for an intended purpose, characteristics of the performance of the assay will be tested. The assay may need 
additional optimisation or may be found to be fit for purpose based on the results of the validation work. 

Criteria for Assay Development and Validation 

i) Definition of the intended purpose(s) 
ii) Optimisation 
iii) Standardisation 
iv) Repeatability 
v) Analytical sensitivity 
vi) Analytical specificity 



vii) Thresholds (cut-offs) 
viii) Diagnostic sensitivity 
ix) Diagnostic specificity 
x) Reproducibility 
xi) Fitness for intended purpose(s) 

The OIE Standard for Management and Technical Requirements for Laboratories Conducting Tests for Infectious 

Diseases (World Organisation for Animal Health, 2008)3 states that test methods and related procedures must be 
appropriate for specific diagnostic applications in order for the test results to be of relevance. In other words, the 
assay must be „fit for purpose‟. The qualitative and quantitative assessment of capacity of a positive or negative 
test result to predict accurately the infection or exposure status of the animal or population of animals is the 
ultimate consideration of assay validation. This capacity is dependent on development of a carefully optimised 
and standardised (Section A.2.3) assay that, through accrual of validation data, provides confidence in the 
assay‟s ability to perform according to the intended purpose. In order to ensure that test results provide useful 
diagnostic inferences about animals or populations with regard to the intended purpose, the validation process 
encompasses initial development and assay performance documentation, as well as on-going assessment of 
quality control and quality assurance. Figure 1 shows the assay validation process, from assay design through the 
development and validation pathways to implementation, deployment, and maintenance of the assay 

The first step of assay development is selection of an assay type that is appropriate and that likely can be 
validated for a particular use (fitness for purpose).  

The most common purposes are to: 

1) Contribute to the demonstration of freedom from infection in a defined population 
(country/zone/compartment/herd) (prevalence apparently zero): 

1a) „Free‟ with and/or without vaccination, 

1b) Re-establishment of freedom after outbreaks 

2) Certify freedom from infection or presence of the agent in individual animals or products for trade/movement 
purposes. 

3) Contribute to the eradication of disease or elimination of infection from defined populations. 

4) Confirm diagnosis of suspect or clinical cases (includes confirmation of positive screening test). 

5) Estimate prevalence of infection or exposure to facilitate risk analysis (surveys, herd health status, disease 
control measures). 

6) Determine immune status of individual animals or populations (post-vaccination). 

These purposes are broadly inclusive of many narrower and more specific applications of assays (see the 
Recommendations for validation of diagnostic tests: footnote 2) for each assay type for details). Such specific 
applications and their unique purposes need to be clearly defined within the context of a fully validated assay.  

Further to the intended purpose, the assay needs to be defined in terms of target animal species, target 
pathogen(s) or condition, and sampling matrix. 

                                                           
3  This is a specific interpretation of the more generally stated requirements of the ISO/IEC 17025:2005 international quality 

standard for testing laboratories (2005). This publication further states that for a test method to be considered appropriate, 
it must be properly validated and that this validation must respect the principles outlined in this document, the OIE 
Validation Standard.  



  

 

Prior knowledge, thought and planning need to go into designing all steps of a new assay destined for 
validation, or an existing assay that is being modified. Assistance is offered in the Recommendations 
for validation of diagnostic tests (see footnote 2), which cover best practices for development and 
validation of assays for detection of various analytes (e.g. antibody, antigen, and nucleic acid 
detection).  

Development of any assay is dependent on analyte reference samples that reflect the target analyte, 
the matrix in which the analyte is found, and the population for which the assay is intended to be used. 
The reference samples may be sera, fluids (including meat juices) or tissues that contain the analyte of 
interest or a genomic construct consistent with the target analyte. These reference materials are used 
in experiments conducted throughout the development process and carried over into the validation of 
the assay.  
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The operating range of an assay is the interval of analyte concentrations or titres over which the 
method provides suitable accuracy and precision. Accuracy is the closeness of a test value to the 
expected (true) value (mean or median) for a reference standard reagent of known concentration or 

titre. Precision4 is the degree of dispersion (variance, standard deviation or coefficient of variation) 
within a series of measurements of the same sample tested under specified conditions. During 
development of the assay, the lower and upper limits of the operating range are determined. To 
formally determine this range, a high positive reference sample is selected (ideally, this sample will be 
the same one from among the three samples described in Section A.2.3 below). This high positive 
sample is serially diluted to extinction of the assay‟s response in an analyte-negative matrix of the 
same constitution as the sample matrix from animals in the population targeted by the assay. The 
results are plotted as a „response-curve‟, with the response (e.g. optical density, cycle threshold, 
counts, etc.) a function of analyte concentration (amount). The curve establishes the working range of 
the assay. If the range is found to be unacceptable for the intended purpose, additional optimisation 
may be needed. The typical calibration curve for most assays is sigmoidal in shape. The data are 
transformed to approximate a linear relationship between response and concentration using a suitable 
algorithm (Findlay & Dillard, 2007). 

Optimisation is the process by which the most important physical, chemical and biological parameters 
of an assay are evaluated and adjusted to ensure that the performance characteristics of the assay are 
best suited to the intended application. It is useful to select at least three well-defined reference 
samples, representing the analyte ranging from high positive to negative (e.g. high, low positive and 
negative). These samples ideally should represent known infected and uninfected animals from the 
population that will become the target of the assay. Obtaining such reference samples, however, is not 
always possible, particularly for nucleic acid and antigen detection assays. The alternative of preparing 
reference samples spiked with cultured agents or positive sera is inferior as these samples do not truly 
represent the naturally occurring matrix-agent interaction (see also Chapter 3.6.6 Selection and use of 
reference samples and panels). When no other alternative exists, spiking a sample with a known 
amount of the analyte or agent derived from culture, or diluting a high positive serum in negative serum 
of the same species may be all that is available. In either case, it is imperative that the matrix, into 
which the analyte is placed or diluted, is identical to, or resembles as closely as possible the samples 
that ultimately will be tested in the assay. Ideally, reference samples have been well characterised by 
one or preferably at least two alternate methodologies. These samples can be used in experiments to 
determine if the assay is able to distinguish between varying quantities of analyte, distinguish the target 
from closely related analytes, and for optimising the reagent concentrations and perfecting the protocol. 
In principle, for all assay types, it is highly desirable to prepare and store a sufficient amount of each 
reference sample in aliquots for use in every run of the candidate assay as it is evaluated through the 
entire development and validation process. Switching reference samples during the validation process 
introduces an intractable variable that can severely undermine interpretation of experimental data and, 
therefore, the integrity of the development and validation process.  

The labour-intensive process of optimising an assay is fundamental and critical to achieving a reliable 
and predictable assay performance. Scientific judgment and use of best scientific practices, as 
provided in the Recommendations for validation of diagnostic tests (see footnote 2), are recommended 
to guide optimisation of all elements of assay development and validation. The approach outlined 
provides a solid foundation for development of a reliable assay. Often, prototype assays are developed 
using reagents and equipment at hand in the laboratory. However, if the assay is intended for routine 
diagnostic use in multiple laboratories, standardisation becomes critical. Every chemical and buffer 
formulation must be fully described. All reagents must be defined with respect to purity and grade 
(including water). Acceptable working ranges must be established and documented for parameters 
such as pH, molarity, etc. Standards for quality, purity, concentration and reactivity of biologicals must 
be defined. Shelf lives and storage conditions must also be considered for both chemicals and 
biologicals. Acceptable ranges for reaction times and temperatures also need to be established. 
Essential equipment critical to assay performance must be described in detail, including operational 
specifications and calibration. Process (quality) control should be an integral part of optimisation and 
considered from the very beginning rather than, as is often the case at the end of assay development. 
In addition to the above, downstream aspects such as data capture, data manipulation and 

                                                           
4 Laboratory sources of variation that affect assay precision include: 1) within a single test run, 2) between concurrent runs, 

3a) between assay runs at different times in the same day or on different days under similar conditions, 3b) between 
assay runs on different days with different operators, 4) between laboratories. In this chapter, categories 1–3 are 
estimates of repeatability, and category 4 is synonymous with reproducibility.  



  

interpretation may also require standardisation and optimisation. Finally, all of these parameters, once 
optimised, must be fully described in the test method protocol. 

During optimisation of an assay, it is important to take note of procedural steps and assay parameters 
that have a narrow range in which the assay performs optimally, as these are the critical points that 
ultimately affect an assay‟s reliability (see Section A.2.7). For some assay types, specific steps in the 
procedure may have more impact than other steps on the final assay performance (see Section B.5 
below and Chapter 3.6.8 Comparability of assays after minor changes in a validated test method for 

additional information on establishing comparability when reagents or processes are changed).  

A variety of analyte reference samples and other process controls that are routinely included in any 
assay system are identified in the following sections. These provide critical assay monitoring functions 
that require special attention during assay optimisation. In addition, attention must be paid to the proper 
preparation and storage of all biological reagents and reference materials to ensure stability (see 
Chapter 1.1.2).  

Each different matrix to be used in an assay must be used in the validation process. Some sample 
matrices include inhibitory factors that interfere with the performance of specific types of assays. 
Serum, particularly if haemolysed, may contain factors toxic to the cells used in viral neutralisation 
assays, while endogenous substances found in some tissues and fluids can interfere with or inhibit 
ligand-binding and enzymatic-based assays such as ELISAs. Faeces, autolysed tissues and semen 
samples tend to contain more interfering substances and are therefore more problematic for assay 
performance than are serum, blood or fresh tissues. 

Robustness refers to an assay‟s capacity to remain unaffected by minor variations in test situations that 
may occur over the course of testing in a single laboratory. Assessment of robustness should begin 
during assay development and optimisation stages. The deliberate variations in method parameters 
may be addressed in experiments after optimal conditions for an assay are established. However, 
when multi-factorial titrations of reagents are used for optimising the assay, indications of a 
compromised robustness may surface. If slight differences in conditions or reagent concentrations 
cause unacceptable variability, the assay most likely will not be robust. Early knowledge of this 
situation elicits a critical decision point for determining whether to continue with validation of the assay 
would be worthwhile, because if an assay is not robust within one laboratory under rather ideal 
conditions, it is unlikely to be reproducible when transferred to other laboratories. 

The factors most likely to affect assay robustness include pH, temperature batch of reagents or brand 
of microtitre plates and aqueous or organic matrix factors (Dejaegher & Vander Heyden, 2006). Once 
optimisation is complete, the robustness of the assay becomes part of the assessment of repeatability 

Ideally, OIE or other international reference standards, containing a known concentration or titre 

of analyte, are the reagents to which all assays are standardised (see OIE Guide 35 and also 
chapter 3.6.6). Such standards are prepared and distributed by OIE Reference Laboratories or 
other international reference laboratories. National reference standards are calibrated by 
comparison with an international reference standard whenever possible; they are prepared and 
distributed by a national reference laboratory. In the absence of an international reference 
standard, a national reference standard becomes the standard of comparison for the candidate 
assay. These standards are highly characterised through extensive analysis, and preferably the 
methods for their characterisation, preparation, and storage have been published in peer-
reviewed publications. 

An in-house reference standard generally should be calibrated against an international or 
national standard. In the absence of either of these calibrators and to the extent possible, the in-
house standard is highly characterised in the same manner as international and national 

                                                           
5  Available at: http://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/GUIDELINE_3_REF_STANDARDS_ANG.pdf 

http://www.lcgceurope.com/lcgceurope/author/authorInfo.jsp?id=33692
http://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/GUIDELINE_3_REF_STANDARDS_ANG.pdf


standards (see chapter 3.6.6). This local in-house standard therefore becomes the best 
available standard, and is retained in sufficient aliquotted volumes for periodic use as the 
standard to which working standards are calibrated.  

One or more working standards, commonly known as analyte or process controls, are calibrated 
to an international, national, or in-house standard, and are prepared in large quantities, 
aliquotted and stored for routine use in each diagnostic run of the assay. 

Due to the inherent variation in raw test results that are often observed between test runs of the same 
assay or among laboratories using the same or similar assays, it is almost impossible to compare 
directly (semi-) quantitative data. To improve markedly the comparability of test results both within and 
between laboratories, one or more working standard reagent(s) are included in each run of an assay. 
Raw test values for each test sample can then be converted to units of activity relative to the working 
standard(s) by a process called „normalisation‟. The „normalised‟ values may be expressed in many 
ways, such as a per cent of a positive control (e.g. in an ELISA), or as the estimated concentration or 
titre of an analyte derived from a standard curve. It is good practice to include working standards in all 
runs of the assay during assay development and validation because this allows „normalisation‟ of data, 
which provides a valid means for direct comparison of results between runs of an assay. It is 
mandatory to control the (absolute) variation of the normalisation standards as otherwise normalisation 
can introduce a bias. For more information, see Chapters 3.6.1 Development and optimisation of 
antibody detection assays, 3.6.2 Development and optimisation of antigen detection assays and 3.6.3 
Development and optimisation of nucleic acid detection assays. 

Assessment of repeatability should begin during assay development and optimisation stages. Early 
knowledge of this situation elicits a critical decision point for determining whether it is worthwhile to 
continue with validation of the assay.  

Repeatability is further verified during Stage 1 of assay validation (Section B.1.1). When the optimised 
test is run under routine laboratory or field conditions (Stage 4 of assay validation), repeatability is 
continually monitored as part of process control procedures for the duration of the life of the assay (see 
Section B.5.1). 

“Validation” is a process that determines the fitness of an assay that has been properly developed, optimised and 
standardised for an intended purpose(s). Validation includes estimates of the analytical and diagnostic 
performance characteristics of a test. In the context of this document, an assay that has completed the first three 
stages of the validation pathway (Figure 1), including performance characterisation, can be designated as 
“validated for the original intended purpose(s)”.  

Ideally, the design of studies outlined in the following sections should be done with assistance of a statistician and 
a disease expert to ensure that the sample size and experimental approach are valid. It is possible to design 
experiments that efficiently provide information on likely within- and between-laboratory sources of variation in 
assay precision (see footnote 4 in Section A.2.2, above), which will define the performance characteristics of the 
assay. The choice of organisms, strains or serotypes to assess analytical sensitivity and specificity should reflect 
current knowledge and therefore inform the best possible experimental design for targeting specific analytes. 

Repeatability is the level of agreement between results of replicates of a sample both within and 
between runs of the same test method in a given laboratory. Repeatability is estimated by evaluating 
variation in results of replicates. The number of replicates should preferably be determined in 
consultation with a statistician with a suggested minimum of three samples representing analyte activity 
within the operating range of the assay. Each of these samples is then aliquoted into the appropriate 
number of individual vessels as identical replicates of the original sample containing the original 
analyte and matrix concentration (see chapter 3.6.6). Each replicate is then run through all steps of the 



  

assay, including creating the working dilution, as though it were a test sample derived from the 
population targeted by the assay. It is not acceptable to prepare a final working dilution of a sample in a 
single tube from which diluted aliquots are pipetted into reaction vessels, or to create replicates from 
one extraction of nucleic acid rather than to extract each replicate before dilution into the reaction 
vessels. Such „samples‟ do not constitute valid replicates for repeatability studies. Between-run 
variation is determined by using the same samples in multiple runs involving two or more operators, 
done on multiple days. The variation in replicate results can be expressed as standard deviations, 
coefficients of variation (standard deviation ÷ mean of replicates), or other possible options (see 
chapter 3.6.4 Measurement uncertainty for assessments of repeatability). 

Analytical specificity (ASp) is the ability of the assay to distinguish the target analyte (e.g. antibody, 
organism or genomic sequence) from non-target analytes, including matrix components. The 
assessment is qualitative and the choice and sources of sample types, organisms and sequences for 
the ASp evaluation should reflect test purpose and assay type. See chapters 3.6.1, 3.6.2 and 3.6.3 for 
guidance for antibody, antigen and nucleic acid assays, respectively. ASp is documented during Stage 
1 validation, and cross-reactions identified. Cross-reactivity (ASp less 100%) may be acceptable 
depending on the proposed use of the assay. The impact of cross-reactivity is further documented 
during Stage 2 (establishment of DSp) and assessed at Stage 4 implementation. 

Selectivity refers to the extent to which a method can accurately quantify the targeted analyte in 
the presence of: 1) interferents such as matrix components (e.g. inhibitors of enzymes in the 
reaction mix); 2) degradants (e.g. toxic factors); 3) nonspecific binding of reactants to a solid 
phase (e.g. conjugate of an ELISA adsorbed to well of microtiter plate); 4) antibodies to 
vaccination that may be confused with antibodies to active infection. Such interferents may 
cause falsely reduced or elevated responses in the assay that negatively affect its analytical 
specificity. Vessman et al. (2001) is a useful overview of selectivity as defined for analytical 

chemistry from which a modification described herein was deduced for application to diagnostic 
tests.  

Exclusivity is the capacity of the assay to detect an analyte or genomic sequence that is unique 
to a targeted organism, and excludes all other other known organisms that are potentially cross-
reactive. This would also define a confirmatory assay.  

Inclusivity is the capacity of an assay to detect several strains or serovars of a species, several 
species of a genus, or a similar grouping of closely related organisms or antibodies thereto. It 
characterises the scope of action for a screening assay. 

The limit of detection (LOD) is a measure of the analytical sensitivity (ASe) of an assay. The LOD is the 
estimated amount of analyte in a specified matrix that would produce a positive result at least a 
specified percent of the time. Typically, estimated LOD will be based on spiking of the analyte into the 
target matrix. The choice of analyte(s) (e.g. species, strains) is part of the ASe definition and should be 
reported properly. These experiments may be designed for precise and accurate estimation of the 
probability point (e.g. 50% or 100%), but in some circumstances a conservative estimate of the LOD 
(e.g. 100%) may be acceptable. For example, in a titration using tenfold dilutions all replicates at all 
dilutions might show either 100% or 0% response. There are two choices at that point. The last dilution 
showing 100% response may be accepted as a conservative estimate of the lower limit of detection. A 
more accurate estimate may be obtained by a second stage experiment using narrower intervals in the 
dilution scheme focusing on the region between 100% and 0%. Methods for statistical evaluation of 
LOD data are in the Chapter 3.6.5 Statistical approaches to validation. 

Some test methods or procedures may be qualified for use as analytical tools in the diagnostic 
laboratory. These usually are secondary adjunct tests or procedures that are applied to an analyte that 
has been detected in a primary assay. The purpose of such analytical tools is to further characterise 



the analyte detected in the primary assay. Examples of such adjunct tests include virus neutralisation 
to type an isolated virus, and molecular sequencing.  

Such adjunct tests must be validated for analytical performance characteristics (Sections A.2 through 
B.1.3, above). However, they differ from diagnostic tests because they do not require validation for 
diagnostic performance characteristics (Sections B.2 through B.4, below) if their results are not used to 
establish a final diagnosis with regard to the intended purpose. The analytical accuracy of these tools 
may be defined by comparison with a reference reagent standard, or by characteristics inherent in the 
tool itself (such as endpoint titration). In all of these examples, the targeted analyte is further 
characterised quantitatively or qualitatively by the analytical tool. 

Estimates of DSe (proportion of samples from known infected reference animals that test positive in an assay) 
and DSp (the proportion of samples from known uninfected reference animals that test negative in an assay) are 
the primary performance indicators established during validation of an assay. These estimates are the basis for 
calculation of other parameters from which inferences are made about test results (e.g. predictive values of 
positive and negative test results). Therefore, it is imperative that estimates of DSe and DSp are as accurate as 
possible. Ideally, they are derived from testing a panel of samples from reference animals, of known history and 
infection status relative to the disease/infection in question and relevant to the country or region in which the test 
is to be used. An estimate of the area under the receiver operating characteristic (ROC) curve is a useful adjunct 
to DSe and DSp estimates for a quantitative diagnostic test because it assesses its global accuracy across all 
possible assay values (Greiner et al., 2000; Zweig & Campbell, 1993). This approach is described in chapter 

3.6.5. 

The designated number of known positive and known negative samples will depend on the likely values of DSe 
and DSp of the candidate assay and the desired confidence level for the estimates (Table 1 and Jacobson, 1998). 
Table 1 provides two panels of the theoretical number of samples required, when either a 5% or 2% error is 
allowed in the estimates of DSe or DSp. Many samples are required to achieve a high confidence (typically 95%) 
in the estimates of DSe and DSp when a small error margin in the estimate is desired. For example comparison of  

  
2% error allowed in estimate of 

DSe and DSp 

5% error allowed in estimate of 

DSe and DSp 

Estimated DSe 
or DSp 

Confidence  Confidence  

90% 95% 99% 90% 95% 99% 

90% 610 864 1493 98 138 239 

92% 466 707 1221 75 113 195 

94% 382 542 935 61 87 150 

95% 372 456 788 60 73 126 

96% 260 369 637 42 59 102 

97% 197 279 483 32 45 77 

98% 133 188 325 21 30 52 

99% 67 95 164 11 15 26 

a 2% vs 5% error for a likely DSe or Dse of 90% and 95% confidence shows a considerable increase (864 vs 
138) in the number of samples required. Logistical and financial limitations may require that less than the 
statistically required sample size will be evaluated, in which case the confidence interval calculated for DSe and 
DSp will indicate less diagnostic confidence in the results. Sample size also may be limited by the fact that 
reference populations and OIE reference standards may be lacking (see chapter 3.6.5 for further details). It may, 
therefore, be necessary to use a sub-optimal number of samples initially. It is, however, highly desirable to 
enhance confidence and reduce error margin in the DSe and DSp estimates by adding more samples (of 
equivalent status to the original panel) as they become available. 



  

The following are examples of reference populations and methodologies that may aid in determining performance 
characteristics of the test being validated.  

Ideally, selection of reference animals requires that important host variables in the target population are 
represented in animals chosen for being infected with or exposed to the target agent, or that have 
never been infected or exposed. The variables to be noted include but are not limited to species, age, 
sex, breed, stage of infection, vaccination history, and relevant herd disease history (for further details 
see chapter 3.6.6). 

True negative samples, from animals that have had no possible infection or exposure to the 
agent, may be difficult to locate. It is often possible to obtain these samples from countries or 
zones that have eradicated or have never had the disease in question. Such samples may be 
useful as long as the targeted population for the assay is sufficiently similar to the sample-
source population.  

It is generally problematic to find sufficient numbers of true positive reference animals, as 
determined by isolation of the pathogen. It may be necessary to resort to samples from animals 
that have been identified by another test of sufficiently high accuracy, such as a validated 
nucleic acid detection assay. The candidate test is applied to these reference samples and 
results (positive and negative) are cross-classified in a 2 × 2 table. This has been called the 
“gold standard model” as it assumes the reference standard is perfect. A sample calculation is 
shown in Table 2 in Section B.2.5). 

When the so-called reference standard is imperfect, which is the rule with any diagnostic tests, 
estimates of DSe and DSp for the candidate assay based on this standard will be flawed. A way to 
overcome this problem is to perform a latent class analysis of the joint results of the two tests assuming 
neither test is perfect.  

Latent-class models do not rely on the assumption of a perfect reference test but rather estimate the 
accuracy of the candidate test and the reference standard with the joint test results (Branscum et al., 
2005; Enøe et al., 2000; Georgiadis et al., 2003; Hui & Walter, 1980). If a Bayesian latent class 
analysis is used, prior knowledge about the performance of the reference test and the candidate test 
can be incorporated into the analysis. 

Because these statistical models are complex and require critical assumptions, statistical assistance 
should be sought to help guide the analysis and describe the sampling from the target population(s), 
the characteristics of other tests included in the analysis, the appropriate choice of model and the 
estimation methods based on peer-reviewed literature (see chapter 3.6.5 for details).  

Samples obtained sequentially from experimentally infected or vaccinated animals are useful for 
determining the kinetics of antibody responses or the presence/absence of antigen or organisms in 
samples from such animals. However, multiple serially acquired pre- and post-exposure results from 
individual animals are not acceptable for establishing estimates of DSe and DSp because the statistical 
requirement of independent observations is violated. Single time-point sampling of individual 
experimental animals can be acceptable (e.g. one sample randomly chosen from each animal). 
Nevertheless it should be noted that for indirect methods of analyte detection, exposure to organisms 
under experimental conditions, or vaccination, may elicit antibody responses that are not quantitatively 
and qualitatively typical of natural infection in the target population (Jacobson, 1998). The strain of 
organism, dose, and route of administration to experimental animals are examples of variables that 
may introduce error when extrapolating DSe and DSp estimates to the target population. In cases 
when the near-impossibility of obtaining suitable reference samples from naturally exposed animals 
necessitates the use of samples from experimental animals for validation studies, the resulting DSe 
and DSp measures should be considered as less than ideal estimates of the true DSp and DSe. 

 



To obtain DSe and DSp estimates of the candidate assay, which is measured on a continuous scale, 
the test results first must be reduced to two (positive or negative) or three (positive, intermediate 
[doubtful] or negative) categories of test results. This is accomplished by insertion of one or two cut-off 
points (threshold or decision limits) on the scale of test results. The selection of the cut-off(s) should 
reflect the intended purpose of the assay and its application, and must support the required DSe and 
DSp of the assay. Options and descriptive methods for determining the best way to express DSe and 
DSp are available (Branscum et al., 2005; Georgiadis et al., 2003; Greiner et al., 1995; Greiner et al., 
2000; Jacobson, 1998; Zweig & Campbell, 1993; and chapter 3.6.5). If considerable overlap occurs in 
the distributions of test values from known infected and uninfected animals, it is impossible to select a 
single cut-off that will accurately classify these animals according to their infection status. Rather than a 
single cut-off, two cut-offs can be selected that define a high DSe (e.g. inclusion of 99% of the values 
from infected animals), and a high DSp (e.g. 99% of the values from uninfected animals) (Greiner et 
al., 1995).  

The main difficulty in establishing cut-offs based on diagnostic performance characteristics is the lack 
of availability of the required number of well-characterised samples. Alternatives are discussed in 
Section B.2.6 on provisional acceptance of an assay during accrual of data to enhance estimates of 
DSe and DSp. 

A typical method for determining DSe and DSp estimates is to test the reference samples in the new 
assay, and cross tabulate the categorical test results in a 2 × 2 table. In a hypothetical example, 
assume the test developer has selected a sample size for DSe and DSp for the new assay under the 
assumption that the most likely values are 97% (DSe) and 99% (DSp), respectively, with a desired 
confidence of 95% for both estimates. The desired error margin in the estimates was set at 2%. Table 
1 indicates that 279 samples from known infected animals are required for the DSe assessment, and 
95 known negative samples are needed for establishing the DSp estimate. The samples were then run 
in the new assay. Table 2 is a hypothetical set of results from which DSe and DSp estimates have 
been obtained. 

  Number of reference samples required* 

   Known positive (279) Known negative (95) 

Test 
results 

Positive 270 
    

7 
TP FP 

Negative 9 
FN TN 

88 
    

  Diagnostic sensitivity* Diagnostic specificity* 

  TP/(TP + FN) TN/(TN + FP) 

   96.8% (94.0 – 98.5%)** 92.6% (85.4 – 97.0%)** 

*Based on Table 1 for an assay with the following parameters: 
1) Prior to testing, estimated DSe of 97% and DSp of 99% 
2) 95% = required confidence in DSe and DSp estimates 
3) 2% = Error margin in the estimates of DSe and DSp 

TP and FP = True Positive & False Positive, respectively 
TN and FN = True Negative and False Negative, respectively 

**95% exact binomial confidence limits for DSe and DSp calculated values  
(see chapter 3.6.5 for information on confidence limits) 

In this example, the DSe estimate is as anticipated, but the DSp is much lower (92%) than the 
anticipated value of 99%. As a consequence, the width of the confidence interval for DSp is greater 
than expected. Re-inspection of Table 1 indicates that 707 samples are necessary to achieve an error 
margin of ± 2% at a DSP of 92% but such an increase in sample size might not be feasible (see 
chapter 3.6.5 for further details).  



  

There are situations where it is not possible or desirable to fulfil Stage 2 of the Validation Pathway 
because appropriate samples from the target population are scarce and animals are difficult to access 
(such as for transboundary infectious diseases or wildlife diseases).  

Experience has shown that the greatest obstacle for continuing through Stage 2 of the Validation 
Pathway is the number of defined samples required to calculate DSe and DSp. The formula is well 
known and tables are available for determining the number of samples required to estimate various 
levels of DSe and DSp, depending on the desired error margin and the level of confidence in the 
estimates (Table 1 and Jacobson, 1998). The formula assumes that the myriad of host/organism 
factors that may affect the test outcome are all accounted for. Since that assumption may be 
questionable, the estimated sample sizes are at best minimal. For a disease that is not endemic or 
widespread, it may be impossible, initially, to obtain the number of samples required, but over time, 
accrual of additional data will allow adjustment of the cut-off (threshold) or if no adjustment is needed, 
enhance confidence in the estimates. 

Provisional recognition defines an assay that has been assessed through Stage 1 for critical assay 
benchmark parameters (ASe, ASp and repeatability) with, in addition, a preliminary estimate of DSp 
and DSe based on a small select panel of well-characterised samples containing the targeted analyte 
and a preliminary estimate of reproducibility. This represents partial completion of Stage 2. Preliminary 
reproducibility estimates of the candidate assay could be done using the select panel of well-
characterised samples to enhance provisional acceptance status for the assay. The candidate test 
method is then duplicated in laboratories in at least two different institutes, and the panel of samples is 
evaluated using the candidate assay in each of these laboratories, using the same protocol, same 
reagents as specified in the protocol, and comparable equipment. This is a scaled-down version of the 
reproducibility study in Stage 3 of assay validation. In following this procedure of provisional recognition 
the test protocol must not be varied. 

Provisional recognition of an assay by state or national authorities means that the assay has not been 
evaluated for diagnostic performance characteristics. As such, the laboratory should develop and 
follow a protocol for adding and evaluating samples, as they become available, to fulfil this 
requirement. Ideally, this process should be limited to a specific timeframe in which such an accrual 
would be directed toward fulfilling Stages 2 and 3 of the validation pathway, and to particular situations 
(emergencies, minor species, no other test available, etc.) 

Reproducibility is the ability of a test method to provide consistent results, as determined by estimates 
of precision, when applied to aliquots of the same samples tested in different laboratories, preferably 
located in distinct or different regions or countries using the identical assay (protocol, reagents and 
controls). To assess the reproducibility of an assay, each of at least three laboratories should test the 
same panel of samples (blinded) containing a suggested minimum of 20 samples, with identical 
aliquots going to each laboratory (see chapter 3.6.6). This exercise also generates preliminary data on 
non-random effects attributable to deployment of the assay to other laboratories. In addition, within-
laboratory repeatability estimates are augmented by the replicates used in the reproducibility studies. 
Measurements of precision can be estimated for both the reproducibility and repeatability data (see 
chapter 3.6.4 for further explanation of the topic and its application). 

For field tests, reproducibility should be evaluated under the conditions of intended use. 

On completion of Stage 3 validation, assuming the earlier stages have been fully and satisfactorily 
completed, the assay may be designated as “validated for the original intended purpose”. Retention of 
this designation is dependent on continual monitoring of the assay performance, as described in 
Section 5.1. 

 

                                                           
6  Provisional recognition does not imply acceptance by the OIE. It does, however, recognise an informed decision of 

authorities at local, state, national or international levels of their conditional approval of a partially validated assay.  



The successful deployment of an assay provides additional and valuable evidence for its performance according 
to the expectations. Moreover, the (true) prevalence of the diagnostic trait in the target population is an important 
factor that needs to be accounted for as described below. 

While this chapter deals with validation and fitness for purpose from a scientific perspective, it should 
also be noted that other practical factors might impact the utility of an assay with respect to its intended 
application. These factors include not only the diagnostic suitability of the assay, but also its 
acceptability by scientific and regulatory communities, acceptability to the client, and feasibility given 
available laboratory resources. For some diseases, multiple assays might be available for use in 
combination in disease control and surveillance programmes and hence, an assay‟s utility might need 
to be assessed by evaluating incremental changes in DSe, DSp and predictive values of the combined 
tests. 

An inability to meet operational requirements of an assay also may make it unfit for its intended use. 
Such requirements may include performance costs, equipment availability, level of technical 
sophistication and interpretation skills, kit/reagent availability, shelf life, transport requirements, safety, 
biosecurity, sample throughput, turn-around times for test results, aspects of quality control and quality 
assurance, and whether the assay can practically be deployed to other laboratories. Test kits used in 
the field are highly desirable from an ease-of-use viewpoint, but because they are performed outside 
the confines of a controlled laboratory environment, they require added precautions to maintain fitness 
for purpose (Crowther et al., 2006). 

Predictive values of test results: The positive predictive value (PPV) is the probability that an animal 
that has tested positive is in fact positive with regard to the true diagnostic status. The negative 
predictive value (NPV) is the probability that an animal that has tested negative is in fact negative with 
regard to the true diagnostic status.  

Predictive values of test results are an application of Bayes' theorem and are calculated as follows: 

PPV = 
 P  DSe

 P  DSe + (1 - P)  (1-DSp )
  

and 

NPV = 
 (1 - P)  DSp

 P  (1 - DSe) + (1 - P)  DSp
  

Where: 

PPV = Predictive value of a positive test result 

NPV = Predictive value of a negative test result 

P = Prevalence of infection 

DSe = Diagnostic sensitivity 

DSp = Diagnostic specificity 

In contrast to DSe and DSp, predictive values are influenced by the true prevalence of the true 
diagnostic status of the target population. In other words, predictive values are not inherent 
characteristics of a specific diagnostic test, but are a function of its DSe and DSp and the local 
prevalence of infection in a defined population at a given point in time. 

Predictive values are of great importance to field veterinarians for the interpretation of results. For 
example, a PPV of 0.9 means that an animal reacting positive to the test has 90% chance of being 
indeed infected and 10% probability of being a false positive. 



  

The predictive value of a positive result also has great importance for the veterinary services in charge 
of the management of control or eradication programmes. If we consider the inverse of the PPV (i.e. 
1/PPV) it gives the information on how much money is spent in the culling of true and false positives for 
each true positive animal detected by the surveillance activity. In other words, if the PPV V is 0.67, it 
means that two positive animals out of three are true positives and the remaining is a false positive. 
Since during the application of a control programme, the prevalence of infection is continually 
changing, the monitoring of the PPV is a way of evaluating the costs of the programme. 

Furthermore, during the application of a control programme it is usually advisable to change the 
sensitivity of the tests employed, based on the variation of prevalence of infection in the target 
population and on the objective of the programme, the PPV may be used to make the changes in DSe 
and DSp based on economic considerations. In other words, when the need for a change in DSe and 
DSp of the test arises, a number of putative cut-offs may be set along the ROC curve of the test 
validation and the relevant values of DSe and DSp for each cut-off may be used to evaluate the 
expected cost for the culling of each infected animal.  

If the purpose is establishing evidence for freedom from disease, the NPV is the more important 
measure. The NPV critically depends on DSe. 

Traditionally, assays have been recognised internationally by the OIE when they are designated as 
prescribed or alternate tests for trade purposes. This has often been based on evidence of their 
usefulness on a national, regional or international basis. For commercial diagnostic kits that have gone 
through the OIE procedure for validation and certification of diagnostic assays, the final step is listing of 
the test in the OIE Register. Tests listed in the Register are certified as fit for a specific purpose if they 
have completed Validation Stages 1, 2 and 3. The Register is intended to provide potential kit users 
with an informed and unbiased source of information about the kit and its performance characteristics 
for an intended purpose. The Register is available on the OIE website at: http://www.oie.int/en/our-
scientific-expertise/certification-of-diagnostic-tests/the-register-of-diagnostic-tests/. 

Ultimate evidence of the usefulness of an assay is its successful application(s) in other laboratories 
and inclusion in national, regional and/or international control or surveillance programmes. Reference 
laboratories play a critical role in this process. In the natural progression of diagnostic and/or 
technological improvements, new assays will become the new standard method to which other assays 
will be compared. As such, they may progressively achieve national, regional and international 
recognition. As a recognised standard, these assays will also be used to develop reference reagents 
for quality control, proficiency and harmonisation purposes. These reference reagents may also 
become international standards.  

An assessment of the reproducibility should be repeated when the test is transferred from the 
development laboratory to the field, whether for use in local laboratories or in field applications. 
Predictable changes, e.g. extremes of temperature and levels of operator experience, should be 
assessed as additional sources of variation in assay results that may affect estimates of reproducibility. 

To retain the status of a validated assay it is necessary to assure that the assay as originally validated 
consistently maintains the performance characteristics as defined during validation of the assay. This 
can be determined in a quality assurance programme characterised by carefully monitoring the assay‟s 
daily performance, primarily through precision and accuracy estimates for internal controls, as well as 
outlier tendencies. The performance can be monitored graphically by plotting measurements from 

assay controls in control charts7. Deviations from the expected performance should be investigated so 
corrective action can be taken if necessary. Such monitoring provides critical evidence that the assay 
retains its “validated” designation during the implementation phase of the assay. Reproducibility is 
assessed through external quality control programmes such as proficiency testing. Should the assay 
cease to produce results consistent with the original validation data, the assay would be rendered unfit 

                                                           
7  Control chart: A graphical representation of data from the repetitive measurement of a control sample(s) tested in different 

runs of the assay over time. 

http://www.oie.int/en/our-scientific-expertise/certification-of-diagnostic-tests/the-register-of-diagnostic-tests/
http://www.oie.int/en/our-scientific-expertise/certification-of-diagnostic-tests/the-register-of-diagnostic-tests/


for its intended purpose. Thus, a validated assay must be continuously assessed to assure it maintains 
its fitness for purpose. 

Over time, modifications of the assay likely will be necessary to address changes in the intended 
purpose, analytes targeted (i.e. modification of the assay to adjust diagnostic performance) or technical 
modifications to improve assay efficiency or cost-effectiveness. For a change in intended purpose of 
the assay, then a revised validation from Stage 2 onwards is obligatory. 

If the assay is to be applied in another geographical region and/or population, revalidation of the assay 
under the new conditions is recommended. Lineages or sub-lineages of an infectious agent, derived 
from animals in different geographic locations, are known to vary requiring revalidation of the assay for 
the specified target population. This is especially true for nucleic acid detection (NAD) systems as it is 
very common for point mutations to occur in many infectious agents (especially RNA viruses). 
Mutations, which may occur within the primer or probe sites can affect the efficiency of the assay and 
even invalidate the established performance characteristics. It is also advisable to regularly confirm the 
target sequence at the selected genomic regions for national or regional isolates of the infectious 
agents. This is especially true for the primer and probe sites, to ensure that they remain stable and the 
DSe and DSp for the assay are not compromised. Similar issues can arise with immunologically based 
assays for antigen or antibody. 

A similar situation may occur with emergence of new subtypes of existing pathogens. In these 
circumstances, existing assays may need to be modified.  

Technical modifications to a validated assay such as changes in instrumentation, extraction 
protocols, and conversion of an assay to a semi-automated or fully automated system using 
robotics will typically not necessitate full revalidation of the assay. Rather, a methods 
comparison study is done to determine if the relatively minor modification to the assay affected 
the previously documented performance characteristics of the assay. Comparability can be 
established by running the modified procedure and original procedure side-by-side, with the 
same panel of samples in both, over several runs. The panel chosen for this comparison should 
represent the entire operating range of both assays. If the results from the modified procedure 
and originally validated method are determined to be comparable in an experiment based on a 
pre-specified criterion, the modified assay remains valid for its intended purpose. See chapter 
3.6.8 for description of experiments that are appropriate for comparability testing, and chapter 
3.6.6 on reference sample panels. 

There may be situations where changes to some of the biologicals used in the assay may be 
necessary and/or warranted. This may include changes to the test specimen itself (e.g. a 
change in tissue to be tested or perhaps testing of a different species altogether). It may include 
changes to reagents (e.g. the substitution of a recombinant antigen for a cell culture derived 
antigen or one antibody conjugate for another of similar immunological specificity in an ELISA). 
The difficulty in making any modification lies in determining whether the change requires a 
complete revalidation of the assay at both bench and field levels. At the very least, any 
modification requires that the appropriate Stage 1 „analytical requisites‟ be assessed. The more 
difficult decision relates to Stage 2 „diagnostic performance‟. To assist here, the original 
(reference) assay should initially be compared to the modified (candidate) assay in a controlled 
trial using a defined panel of positive and negative diagnostic samples. See chapter 3.6.8 for a 
description of comparability assessment. If the comparability assessment does not suggest a 
change in diagnostic performance, the modified assay may be phased into routine use. If, on 
the other hand, differences in DSp and DSe are observed, the modified assay would require 
additional Stage 2 or field validation before being adopted.  

When a reagent such as a control sample or working standard is nearing depletion, it is 
essential to prepare and repeatedly test a replacement before such a control is depleted. The 
prospective control sample should be included in multiple runs of the assay in parallel with the 
original control to establish their proportional relationship. It is important to change only one 
reagent at a time to avoid the compound problem of evaluating more than one variable.  



  

Because many host variables have an impact on the diagnostic performance of assays, it is highly 
desirable over time to increase the number of reference samples or samples suitable for latent class 
analysis. The sampling design, collection, transportation, and testing environment for the new samples 
should be the same as used for the original validation study. Increases in sample numbers improves 
the precision of the overall estimates of DSe and DSp, and may allow calculations of DSe estimates by 
factors such as age, stage of disease, and load of organisms. New data should be included annually in 
relevant test dossiers.  

If a laboratory is considering the use of a validated commercial kit or a candidate assay based on 
published literature with validation data, some form of verification will be required to determine whether 
the assay complies with either the kit manufacturer‟s or the author‟s assertions, with respect to Stage 1 
validation criteria, in the context of the intended application. This may require a limited verification of 
both ASp and ASe using available reference materials, whether they be external and/or locally 
acquired from the target population. Once the laboratory is confident that the assay is performing as 
described from an analytical perspective, then proceeding to a limited Stage 2 validation should be 
considered in the context of the intended application and target population before the assay is put into 
routine diagnostic use.  
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