REPORT OF THE MEETING OF THE BUREAU
OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES
Paris, 31 May – 1 June 2004

A meeting of the Bureau of the OIE Scientific Commission for Animal Diseases (in brief, Scientific Commission) was held at the OIE Headquarters in Paris, France, from 31 May to 1 June 2004. Dr Alejandro Schudel, Head of the OIE Scientific and Technical Department, welcomed the participants on behalf of the Director General of the OIE.

The Agenda and List of participants are presented at Appendices I and II.

The meeting was chaired by Prof. Vincenzo Caporale, President of the Scientific Commission, and Dr F. Stoessel was designated as rapporteur.

1. Review of the annual work programme

The Bureau of the Scientific Commission reviewed the plan of activities for the coming year in accordance with the Commission’s Plan of Action (Appendix III) and the directives given by the International Committee during the 72nd General Session.

2. Animal health surveillance

The Bureau of the Scientific Commission reviewed the proposed new appendix on ‘Animal health surveillance: general principles and practices’ that had been circulated to Member Countries in the reports of the December 2003 meetings of the Terrestrial Animal Health Standards Commission (the Code Commission) and the Scientific Commission. The Scientific Commission had previously considered the country comments as well as the views of other experts and produced an updated version to replace Chapter 1.3.6 of the Terrestrial Animal Health Code (the Terrestrial Code). The proposed Chapter is appended to this report (Appendix IV) for the information of Member Countries. It will also be forwarded to the Code Commission for review during its meeting in July 2004. The Code Commission will format the document in line with the Terrestrial Code and circulate it to Member Countries for comments with the view to presenting it for adoption during the 73rd General Session.

The Bureau also decided to present as soon as possible documents regarding surveillance of FMD, CSF and avian influenza to the Code Commission for review and eventual adoption and inclusion in the Terrestrial Code.
3. Safely traded commodities

The Bureau of the Commission reviewed the response obtained from the experts regarding the list of commodities that can be safely traded with respect to risks linked to foot and mouth disease virus (FMDV) and classical swine fever virus (CSFV) and recommended that the experts complete the report and insert the corresponding literature references. After completion, the report should be reviewed and commented on by experts from the corresponding OIE Reference Laboratories and presented to the Scientific Commission at its meeting to be held in January 2005.

4. Bluetongue surveillance guidelines

The Bureau of the Commission reviewed the proposed new chapter on bluetongue for the Terrestrial Code for transmission to the Code Commission and decided to postpone the elaboration of new bluetongue surveillance guidelines until the new chapter is adopted.

5. Review of the chapter on contagious bovine pleuropneumonia of the Terrestrial Animal Health Code

It has been decided to update Chapter 2.1.6 of the Terrestrial Code on contagious bovine pleuropneumonia and its Appendix 3.8.3. The Bureau of the Scientific Commission proposed to include this item on the agenda of the next Scientific Commission meeting to be held in January 2005.

6. Conclusions of the International Conference on the Control of Infectious Animal Diseases by Vaccination, Buenos Aires, Argentina

The Commission Bureau noted and supported the conclusions and recommendations of the International Conference on the Control of Infectious Animal Diseases by Vaccination, held in Buenos Aires, Argentina, 13–16 April 2004 (see Appendix V).

7. Maedi-visna

The OIE Reference Laboratory for maedi-visna in Sophia Antipolis, France, had been requested to prepare a basic document in order to review and update Chapter 2.4.5 of the Terrestrial Code on maedi-visna, in particular with regard to issues that have trade implications. The Bureau of the Commission decided to review the document at its meeting to be held in January 2005.

8. Evaluation of Member Country status with respect to FMD and Rinderpest

The country dossiers that have been received will be examined by the corresponding Ad hoc Group (for Evaluation of Country Status for Foot and Mouth Disease and Rinderpest, respectively) during the month of October 2004.

9. Guidelines for the establishment and the recognition of FMD status

The Commission reviewed the concerns expressed by the Ad hoc Group for Evaluation of Country Status for Foot and Mouth Disease over the difficulties encountered in the evaluation of dossiers for country freedom. These concerns had been brought to the attention of the International Committee during the 72nd General Session in May 2004. It was decided that the Ad hoc Group on Epidemiology, in collaboration with the OIE Designated Experts, will be convened to revise and amend Appendix 3.8.6 of the Terrestrial Code taking into consideration the latest scientific information on the diagnostic performance of the non-structural protein (NSP) tests and the changes introduced into Chapter 2.1.1 of the Terrestrial Code with regard to the concept of ‘virus circulation’. The Scientific Commission will revise the final version during its January 2005 meeting, and, if agreed, this new Appendix 3.8.6 will be submitted to the Code Commission for adoption at the 73rd General Session.
10. **Other matters**

10.1. **Special OIE/FAO**¹ **meeting on the contagious bovine pleuropneumonia situation in SADC**² **countries: OIE Headquarters, Paris, France, 24 May 2004**

During the 72nd General Session of the OIE, held in Paris, France, a special meeting was convened on by the OIE and FAO, on 24 May 2004, to discuss the current contagious bovine pleuropneumonia situation in SADC countries with special reference to the emerging situation of the disease in Zambia. The Bureau of the Commission endorsed this prompt action and would like to be informed, in a timely fashion, of the follow-up activities.

10.2. **Letter from the OIE Delegate of Argentina regarding research on FMD**

The Bureau of the Commission acknowledged the offer made by the Delegate of Argentina of future collaboration for FMD research with the participation of the Scientific Commission. It noted that the project being developed with the DG-Research of the European Commission will address some of the concerns raised by the Delegate of Argentina and that the OIE will be associated with this initiative.

10.3. **Letter received from COPA-COCEGA**³

The Bureau of the Commission noted the answer provided by the OIE Director General to COPA-COCEGA, and decided that the Reference Laboratory for FMD in Pirbright, UK, be contacted with the request to provide an answer to the question raised on ‘the security of the products derived from FMD-vaccinated animals’.

10.4. **Genetic relationship of swine vesicular disease strain POR 1/2004**

Information provided by the OIE Reference Laboratory in Pirbright, UK, on the genetic relatedness of different strains of swine vesicular disease indicates a close relationship between the new strain POR 1/2004 and the Itl/5/98.

10.5. **Web site**

The Bureau of the Commission approved the design of the Web site for the Commission suggested by the Central Bureau and advised that the Bureau include the relevant information as soon as possible.

¹ FAO: Food and Agriculture Organization of the United Nations
² SADC: Southern African Development Community
³ COPA/COCEGA: Committee of Agricultural Organizations in the European Union
MEETING OF THE BUREAU
OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES
Paris, 31 May – 1 June 2004

Agenda

1. Review of annual work programme
2. Animal health surveillance
3. Safely traded commodities
4. Bluetongue surveillance guidelines
5. Review of the chapter on contagious bovine pleuropneumonia of the *Terrestrial Animal Health Code*
6. Conclusions of the International Conference on the Control of Infectious Animal Diseases by Vaccination, Buenos Aires, Argentina
7. Maedi-visna
8. Evaluation of Member Country status with respect to FMD and Rinderpest
9. Guidelines for the establishment and the recognition of FMD status
10. Other matters
MEETING OF THE BUREAU OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES

Paris, 31 May – 1 June 2004

List of participants

MEMBERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Institution/Address</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Vincenzo Caporale</td>
<td>(President)</td>
<td>Director Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’ Via Campo Boario 64100 Teramo ITALY Tel: (39.0861) 33 22 33 Fax: (39.0861) 33 22 51 E-mail: caporale@izs.it</td>
<td></td>
</tr>
<tr>
<td>Dr Kenichi Sakamoto</td>
<td>(Vice-President)</td>
<td>Chief of Diagnostic Laboratory Department of Exotic Diseases Research National Institute of Animal Health 6-20-1 Josui-honcho, Kodaira Tokyo, 187-0022 JAPAN Tel: (81-423) 21 14 41 Fax: (81-423) 25 51 22 E-mail: skenichi@affrc.go.jp</td>
<td></td>
</tr>
<tr>
<td>Dr Federico Stoessel</td>
<td>(Secretary General)</td>
<td>Section agricole Ambassade d’Argentine 225 avenue Louise B.P. 8 B-1050 Brussels BELGIUM Tel: (32.2) 640 33 33 Fax: (32.2) 640 00 08 E-mail: fstoessel@agricola-ue.org</td>
<td></td>
</tr>
</tbody>
</table>

OIE CENTRAL BUREAU

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Bernard Vallat</td>
<td>Director General</td>
<td>12 rue de Prony 75017 Paris FRANCE Tel: 33 - (0)1 44 15 18 88 Fax: 33 - (0)1 42 67 09 87 E-mail: oie@oie.int</td>
</tr>
<tr>
<td>Dr Alejandro Schudel</td>
<td>Head, Scientific and Technical Department</td>
<td>E-mail: a.schudel@oie.int</td>
</tr>
<tr>
<td>Dr Dewan Sibartie</td>
<td>Deputy Head, Scientific and Technical Department</td>
<td>E-mail: d.sibartie@oie.int</td>
</tr>
</tbody>
</table>

Scientific Commission/May–June 2004
Plan of action of the Commission for the next 3 years

<table>
<thead>
<tr>
<th>TERMS OF REFERENCES & TASKS</th>
<th>MEANS OF FULFILLMENT</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To maintain and exchange information on all aspects of terrestrial animal diseases, and to assess recent developments in the practical problems of control and eradication of infectious diseases and the impact of these developments.</td>
<td>Collaborating Centres and Reference Laboratories should become actively engaged in this endeavour becoming facilitators of permanent forums activated in the OIE internet site mainly under SC page and providing annual/or emergency if needed synopsis with the relevant issues that need to be addressed.</td>
</tr>
<tr>
<td>2</td>
<td>To provide scientific guidance to the OIE on the development of policies relating to the assessment and control of diseases, notably those with the potential to affect trade in terrestrial animals and their products or affect human health.</td>
<td>An attempt could be made to address this issue by launching an annual survey conducted among the Delegates asking which are the animal disease problems that represent their PRIORITY and the main difficulties encountered in their control. A yearly event [expert consultation, conference, workshop] should be organised by the OIE with its own experts (mainly from reference laboratories &collaborating centres) to address the issues which appear to be the main problems worldwide and try to propose the most suitable solutions.</td>
</tr>
<tr>
<td>3</td>
<td>To assist the Director General (DG) in improving the collection, use and interpretation of statistical information on terrestrial animal diseases, including emerging diseases, for the benefit of OIE Member Countries.</td>
<td>An Ad hoc Group of «relevant users» should be identified by the central bureau assisted by the SC & TAHSC presidents to define need. Every two years an evaluation meeting should be organised by the SC and convened by the DG.</td>
</tr>
<tr>
<td>4</td>
<td>To provide up-to-date scientific information to the DG and the other OIE Specialist Commissions, gathered through its own resources or in consultation with scientists, experts and Ad hoc Groups.</td>
<td>This is a "on demand" activity that should, however, be organised and planned adequately as is probably the main responsibility of the Commission. In general, the DG and the other OIE Specialist Commissions, therefore, should declare their need at the beginning or each semester as to allow the organisation of an adequate response.</td>
</tr>
<tr>
<td>5</td>
<td>To advise and assist the DG on problems relating to such diseases, including problems of disease control at the regional and global level.</td>
<td>On demand activity</td>
</tr>
<tr>
<td>6</td>
<td>To propose procedures for formally recognising the animal health status of OIE Member Countries.</td>
<td>This activity, at present, is based on a «system» resulting from the «stratification» of many years of experience. The net result that is expected is a coherent system by convening a core group of epidemiologist to assist in country status recognition. The core group of epidemiologists will be invited to participate as often as possible in each one of the Ad hoc Groups of countries status recognition.</td>
</tr>
<tr>
<td>TERMS OF REFERENCES & TASKS</td>
<td>MEANS OF FULFILLMENT</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>To undertake, on behalf of the International Committee (IC), the evaluation of OIE Member Country applications for compliance with OIE standards for freedom from specific terrestrial animal diseases (FMD, Rinderpest, BSE, CBPP).</td>
<td>The evaluation will be carried out by the relevant Ad hoc Groups for each one of the diseases if necessary. All proposals to the International Committee should be endorsed beforehand by Scientific Commission.</td>
</tr>
<tr>
<td>8</td>
<td>To identify issues that require in-depth review and propose, to the DG, the composition and terms of reference of experts or Ad hoc Groups of experts convened specifically to study such issues, and if necessary, to participate in the work of these Groups.</td>
<td>As in number 4 as far as issues «on demand». Other issues could arise from activities in number 1 and 2 and should be addressed according to their nature & relevance.</td>
</tr>
<tr>
<td>9</td>
<td>To advise the DG on the composition and the activities of the Working group on Wildlife diseases and to coordinate its work.</td>
<td>On demand activity. Nothing has been asked by the DG as yet. In any case the date of the meeting of the group should be decided in consultation with the SC Bureau.</td>
</tr>
<tr>
<td>10</td>
<td>To reply to relevant queries relating to the methods for the control of terrestrial animal diseases.</td>
<td>On demand activity</td>
</tr>
<tr>
<td>11</td>
<td>To represent the OIE at scientific and specialised conferences upon the request of the DG.</td>
<td>On demand activity</td>
</tr>
</tbody>
</table>
CHAPTER 1.3.6
ANIMAL HEALTH SURVEILLANCE

1. Introduction and Objectives

In general, surveillance is aimed at demonstrating the absence of disease or infection, determining the occurrence or distribution of disease or infection, while also detecting as early as possible exotic or emerging diseases. The type of surveillance applied depends on the desired outputs needed to support decision-making. The following guidelines may be applied to all diseases, their agents and susceptible species as listed in the Terrestrial Code, and are designed to assist with the development of surveillance methodologies. Except where a specific surveillance method for a certain disease or infection is already described in the Terrestrial Code, the guidelines in this chapter may be used to further refine the general approaches described for a specific disease or infection. Where detailed disease/infection-specific information is not available, suitable approaches should be based on the guidelines in this chapter.

Animal health surveillance is an essential component necessary to detect diseases, to support claims for freedom from disease or infection, to provide data to support the risk analysis process, and to substantiate the rationale for sanitary measures. Surveillance data underpin the quality of disease status reports and should satisfy information requirements for accurate risk analysis both for international trade as well as for internal decision-making.

Essential prerequisites to enable a Member Country to provide information for the evaluation of its animal health status are:

- that the particular Member Country complies with the provisions of Chapter 1.3.3 of the Terrestrial Code on the quality and evaluation of the Veterinary Services;
- that surveillance data where possible, be complemented by other sources of information e.g. scientific publications, research data, documented field observations and other non-survey data.
- that transparency in the planning and execution of surveillance activities and the analysis and availability of data and information, be maintained at all times, in accordance with Chapter 1.1.3 of the Terrestrial Code.

The objectives of this chapter are to:

- Provide guidance to the type of outputs that a surveillance system should generate
- Provide guidelines to assess the quality of disease surveillance systems

2. Definitions

The following definitions apply for the purposes of this chapter.

Bias

A tendency of an estimate to deviate in one direction from a true value (as by reason of nonrandom sampling)
Case Definition

A case definition is a set of criteria used to classify an animal or epidemiological unit as a case or non-case.

Confidence

In the context of demonstrating freedom from infection, confidence is the probability that the type of surveillance applied would detect the presence of infection if the population were infected. The confidence depends on among others the design prevalence, or the assumed level of infection in an infected population. Confidence therefore refers to our confidence in the ability of the surveillance applied to detect disease, and is equivalent to the sensitivity of the surveillance system.

Early detection system

A system for the timely detection and identification of an incursion or emergence of disease/infection in a country or compartment. An early detection system should be under the control of the Veterinary Services and should include the following characteristics:

- representative coverage of target animal populations by field services;
- ability to undertake effective disease investigation and reporting;
- access to laboratories capable of diagnosing and differentiating relevant diseases;
- a training programme for veterinarians, animal health professionals and others involved in handling animals for detecting and reporting unusual animal health incidents;
- the legal obligation of private veterinarians in relation to the Veterinary Administration;
- a national chain of command.

Epidemiological Unit

A group of animals with a defined epidemiological relationship that share approximately the same likelihood of exposure to a pathogen. This may be because they share a common environment (e.g. animals in a pen), or because of common management practices. Usually, this is a herd or flock, however an epidemiological unit may also refer to groups such as the animals belonging to residents of a village, or animals sharing a communal dipping tank system.

Outbreak definition

An outbreak definition is a set of criteria used to classify the occurrence of one or more cases in a group of animals or units as an outbreak.

Probability sampling

A sampling strategy in which every unit has a known non-zero probability of inclusion in the sample.

Sample

The group of elements (sampling units) drawn from a population, on which tests are performed to provide surveillance information.

Sampling Units

The unit that is sampled, either in a random survey or in non-random surveillance. This may be an individual animal or a group of animals (e.g. an epidemiological unit). Together, they comprise the sampling frame.
Appendix IV (contd)

Sensitivity
The proportion of truly positive units that are correctly identified as positive by a test.

Specificity
The proportion of truly negative units that are correctly identified as negative by a test.

Study population
The population from which surveillance data is derived. This may be the same as the target population or a subset of it.

Surveillance
The systematic ongoing collection, collation, and analysis of data and the timely dissemination of information to those who need to know so that action can be taken.

Surveillance System
A method of surveillance that may involve one or more component activities that generates information on the animal health status of populations.

Survey
An investigation in which information is systematically collected, usually carried out on a sample of a defined population group, within a defined time period.

Target population
The population about which conclusions are to be drawn from a study.

Test
A procedure used to classify a unit as either positive or negative with respect to an infection or disease.

Test system
A combination of multiple tests and rules of interpretation which are used for the same purpose as a test.

Units
Individually identifiable elements. This is a generic concept used to describe, for example, the members of a population, or the elements selected when sampling. In these contexts, examples of units include individual animals, pens, farms, holdings, villages, districts etc.

3. **General Principles of Surveillance**

 In assessing the quality of a surveillance system, the following critical elements need to be addressed over and above quality of veterinary services (Chapter 1.3.3).

3.1. **Types of surveillance**

 Surveillance may be based on many different data sources and can be classified in a number of ways, including:

 - the means by which data are collected (active versus passive surveillance);
 - the disease focus (pathogen-specific versus general surveillance); and
 - the way in which units for observation are selected (structured surveys versus non-random data sources).
In this chapter, surveillance activities are classified as being based either on:

- structured population-based surveys, such as:
 - systematic sampling at slaughter;
 - random surveys; or

- structured non-random surveillance activities, such as:
 - disease reporting or notifications;
 - control programmes/health schemes;
 - targeted testing/screening;
 - ante- and post-mortem inspections;
 - laboratory investigation records;
 - biological specimen banks
 - sentinel units
 - field observations;
 - farm production records;

In addition, surveillance data should be supported by related information, such as:

- data on the epidemiology of the infection, including environmental, host population distribution, and climatic information;
- data on animal movements and trading patterns for animals and animal products;
- history of imports of potentially infected material; and
- biosecurity measures in place.

The sources of evidence should be fully described. In the case of a structured survey, this should include a description of the sampling strategy used for the selection of units for testing. For structured non-random data sources, a full description of the system is required including the source(s) of the data, when the data were collected, and a consideration of any biases that may be inherent in the system.

3.2. Critical elements

3.2.1. Populations

Surveillance should be carried out in such a way as to take into account all animal species susceptible to the infection in a country, zone/region or compartment. The surveillance activity may cover all individuals in the population or part of them. In the latter case, care should be taken regarding the inferences made from the results.

Definitions of appropriate populations should be based on the specific recommendations of the disease chapters of the *Terrestrial Code*,

<table>
<thead>
<tr>
<th>TO PROPOSE FOR INSERTION IN CHAPTER 1.1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carriers – animals that harbour the agent and may spread it directly or indirectly while not demonstrating clinical signs of the disease. Depending on the disease, an animal may serve as a carrier animal for shorter or longer periods of time. The length of time that an infection can be spread by inapparent carriers is important in designing a surveillance scheme.</td>
</tr>
<tr>
<td>Reservoirs – some pathogens require either a living organism or inanimate environment for multiplication. Recognition of the location and role of a reservoir in the persistence of an infectious agent should be considered.</td>
</tr>
</tbody>
</table>
• **Vectors** - a pathogen can be vector borne. Where this is the case, the biology and ecology (including seasonal effects) of vector populations should be considered.

• **Immune status** – age of an animal, previous exposure to a specific pathogens, and use of vaccination are factors that need to be considered in determining appropriate diagnostic tests or clinical measures for evidence of infection.

• **Genetic resistance** – some animals may not be susceptible to specific disease agents because of genetic resistance. If this is true for an infectious agent under surveillance, a method for identifying those animals that are susceptible or resistant may need to be factored into the design for surveillance.

• **Age, sex, and other host criteria** – some pathogens can only affect animals that possess certain host related criteria. These type of criteria should be accounted for in the definition of the target population, surveillance design and interpretation of the results

3.2.2. Epidemiological Unit

The relevant epidemiological unit for the surveillance system should be defined and documented to ensure that it is representative of the population. Therefore it should be chosen taking into account factors such as carriers, reservoirs, vectors, immune status, genetic resistance and age, sex, and other host criteria.

3.2.3. Clustering

Infection in a country or zone/region or compartment usually clusters rather than being uniformly or randomly distributed through a population. Clustering may occur at a number of different levels (e.g. a cluster of infected animals within a herd, a cluster of pens in a building, or a cluster of farms in a compartment). Clustering should be taken into account in the design of surveillance activities and the statistical analysis of surveillance data, at least at what is judged to be the most significant level of clustering for the particular animal population and infection.

3.2.4. Case and outbreak definitions

Clear and unambiguous case and outbreak definitions should be developed and documented for each pathogen under surveillance, using, where they exist, the standards in the Terrestrial Code.

3.2.5. Analytical methodologies

Surveillance data should be analysed using appropriate methodologies, and at the appropriate organisational levels to facilitate effective decision making, whether it be planning interventions or demonstrating status.

Methodologies for the analysis of surveillance data should be flexible to deal with the complexity of real life situations. No single method is applicable in all cases. Different methodologies may be needed to accommodate the relevant pathogens, varying production and surveillance systems, and types and amounts of data and information available.

The methodology used should be based on the best available information that is in accord with current scientific thinking. The methodology should be documented and supported by references to the OIE Standards, to the scientific literature and other sources, including expert opinion. Sophisticated mathematical or statistical analyses should only be carried out when justified by the proper amount and quality of field data.
Consistency in the application of different methodologies should be encouraged and transparency is essential in order to ensure fairness and rationality, consistency in decision making and ease of understanding. The uncertainties, assumptions made, and the effect of these on the final conclusions should be documented.

3.2.6. Testing

Surveillance involves the detection of disease or infection by the use of appropriate case definitions based on the results of one or more tests for evidence of infection or immune status. In this context, a test may range from detailed laboratory examinations to field observations and the analysis of production records. The performance of a test at the population level (including field observations) may be described in terms of its sensitivity and specificity. Imperfect sensitivity and/or specificity will have an impact on the conclusions from surveillance and should be taken into account in the design of surveillance systems and analysis of surveillance data.

The values of sensitivity and specificity for the tests used should be specified, and the method used to determine or estimate these values should be documented. Where values for sensitivity and/or specificity for a particular test are specified in the Terrestrial Manual, these values may be used without justification.

Samples from a number of animals or units may be pooled together and subjected to a single test. The results should be interpreted using sensitivity and specificity values that have been determined or estimated for that particular pool size and testing procedure.

3.2.7. Quality assurance

Surveillance systems should incorporate the principles of quality assurance and be subjected to periodic auditing to ensure that all components of the system function and provide verifiable documentation of procedures and basic checks to detect significant deviations of procedures from those documented in the design.

3.2.8. Validation

Results from animal health surveillance systems are subject to one or more potential biases. When assessing the results, care should be taken to identify potential biases that can inadvertently lead to an over-estimate or an under-estimate of the parameters of interest.

3.2.9. Data collection and management

The success of a surveillance system is dependent on a reliable process for data collection and management. The process may be based on paper records or computerised. Even where data are collected for non-survey purposes e.g. during disease control interventions, inspections for movement control or during disease eradication schemes, the consistency of data collection and event reporting in a format that facilitates analysis, is critical. Factors influencing the quality of collected data include:

- The distribution of, and communication between, those involved in generating and transferring data from the field to a centralised location;
- The ability of the data processing system to detect missing, inconsistent or inaccurate data, and to address these problems;
- Maintenance of disaggregated data rather than the compilation of summary data;
- Minimisation of transcription during data processing and communication.
3.3. General Principles for surveys

In addition to the general principles for surveillance discussed above, the following guidelines should be used when planning, implementing and analysing surveys.

3.3.1. Types of surveys

Surveys may be conducted on the entire target population (i.e. a census) or on a sample. A sample may be selected in either of the two following manners:

Non-probability based sampling methods, such as

- Convenience
- Expert choice
- Quota

Probability based sampling methods, such as

- Simple random selection
- Cluster sampling
- Stratified sampling

3.3.2. Systematic selection

Periodic or repeated surveys conducted in order to document disease freedom must be done using probability based sampling methods so that data from the study population can be extrapolated to the target population in a statistically valid manner.

The sources of information should be fully described and should include a detailed description of the sampling strategy used for the selection of units for testing. Also, consideration should be made of any biases that may be inherent in the survey design.

3.3.3. Survey design

The population of epidemiological units should first be clearly defined whereafter sampling units appropriate for each stage, depending on the design of the survey, should be defined.

The design of the survey will depend on the size and structure of the population being studied, the epidemiology of the infection and the resources available.

3.3.4. Sampling

The objective of sampling from a population is to select a subset of units from the population that is representative of the population with respect to the object of the study such as the presence or absence of infection. Sampling should be carried out in such a way as to provide the best likelihood that the sample will be representative of the population, within the practical constraints imposed by different environments and production systems. In order to detect the presence of an infection in a population of unknown disease status targeted sampling methods that optimise the detection of infection can be used. In such cases, care should be taken regarding the inferences made from the results.

3.3.5. Sampling methods

When selecting epidemiological units from within a population, a formal probability sampling method (e.g. simple random sampling) should be used. When this is not possible, sampling should provide the best practical chance of generating a sample that is representative of the target population.
In any case, the sampling method used at all stages should be fully documented and justified.

3.3.6. Sample size

In general, surveys are conducted either to demonstrate the presence or absence of a factor (e.g. infection) or to estimate a parameter (e.g. the prevalence of infection). The method used to calculate sample size for surveys depends on the purpose of the survey, the expected prevalence, the level of confidence desired of the survey results and the performance of the tests used.

3.4. General Principles for structured non-random surveillance

Surveillance systems routinely use structured non-random data, either alone or in combination with surveys. There is a wide variety of non-random data sources that can be used.

3.4.1. Common non-random surveillance sources

A wide variety of non-random surveillance sources may be available. These vary in their primary purpose and the type of surveillance information they are able to provide. Some systems are primarily established as early detection systems, but may also provide valuable information to demonstrate freedom from infection. Other systems provide cross-sectional information suitable for prevalence estimation, either once or repeatedly, while yet others provide continuous information, suitable for the estimate of incidence data (e.g. disease reporting systems, sentinel sites, testing schemes).

3.4.2. Disease reporting or notification systems

Data derived from disease reporting systems can be used in combination with other data sources to substantiate claims of animal health status, to generate data for risk analysis, or for early detection. Effective laboratory support is an important component of any reporting system. Reporting systems relying on laboratory confirmation of suspect clinical cases should use tests that have a good specificity.

3.4.3. Control programmes / health schemes

Animal disease control programmes or health schemes, while focusing on the control or eradication of specific diseases, should be planned and structured in such a manner as to generate data that are scientifically verifiable and contribute to structured surveillance.

3.4.4. Targeted testing / screening

This may involve testing targeted to selected sections of the population (sub populations), in which disease is more likely to be found. Examples include testing culled and dead animals, swill fed animals.

3.4.5. Ante- and post-mortem inspections

Inspections of animals at abattoirs may provide valuable surveillance data. The sensitivity and specificity of such inspections for the detection of disease will be influenced by:

- The level of training and experience of the staff doing the inspections, and the ratio of staff of different levels of training;
- The involvement of the Competent Authorities in the supervision of ante- and post-mortem inspection;
• The quality of construction of the abattoir, speed of the slaughter chain, lighting quality etc; and

• Staff morale.

Abattoir inspections are likely to provide good coverage only for particular age groups and geographical areas. Statistical biases are likely to be more frequent for infected animals originating from larger, better managed farms rather than for animals originating from smallholder or backyard production farms, as well as for healthy rather than diseased animals.

Both for traceback in the event of detection of disease, and for analysis of spatial and herd-level coverage, if possible there should be an effective identification system that relates each animal in the abattoir to its property of origin.

3.4.6. Laboratory investigation records

Analysis of laboratory investigation records may provide useful surveillance information. The coverage of the system will be increased if analysis is able to incorporate records from national, accredited, university and private sector laboratories. Valid analysis of data from different laboratories depends on the existence of standardised diagnostic procedures and standardised methods for interpretation and data recording. As with abattoir inspections, there needs to be a mechanism to relate specimens to the farm of origin.

3.4.7. Biological specimen banks

Specimen banks consist of stored specimens, gathered either through representative sampling or opportunistic collection or both. Specimen banks may contribute to retrospective studies, including providing support for claims of historical freedom from infection, and may allow certain studies to be conducted more quickly and at lower cost than alternative approaches.

3.4.8. Sentinel units

Sentinel units/sites involve the identification and regular testing of one or more of animals of known health/immune status in a specified geographical location to detect the occurrence of disease (usually serologically). They are particularly useful for surveillance of diseases with a strong spatial component, such as vector-borne diseases. Sentinel units provide the opportunity to target surveillance depending on the likelihood of infection (related to vector habitats and host population distribution), cost and other practical constraints. Sentinel units may provide evidence of freedom from infection, or provide data on prevalence and incidence as well as the distribution of disease.

3.4.9. Field observations

• Clinical observations of animals in the field are an important source of surveillance data. The sensitivity and specificity of field observations may be relatively low, but these can be more easily determined and controlled if a clear, unambiguous and easy to apply standardised case definition is applied. Education of potential field observers in application of the case definition and reporting is an important component. Ideally, both the number of positive observations and the total number of observations should be recorded.

3.4.10. Farm production records

Systematic analysis of farm production records may be used as an indicator of the presence or absence of disease at the herd or flock level. In general, the sensitivity of this approach may be quite high (depending on the disease), but the specificity is often quite low.
3.4.11. Critical elements for structured non-random surveillance

There are a number of critical factors which should be taken into account when using structured non-random surveillance data such as coverage of the population, duplication of data, and sensitivity and specificity of tests that may give rise to difficulties in the interpretation of data. Surveillance data from non-random data sources may increase the level of confidence or be able to detect a lower level of prevalence with the same level of confidence compared to structured surveys.

3.4.12. Analytical methodologies

Different methodologies may be used for the analysis of non-random surveillance data.

Analytical methodologies based on the use of step-wise probability estimates to describe the surveillance system may determine the probability of each step either by:

• the analysis of available data, using a scientifically valid methodology; or where no data are available,

• the use of estimates based on expert opinion, gathered and combined using a formal, documented and scientifically valid methodology.

3.4.13. Combination of multiple sources of data

The methodology used to combine the evidence from multiple data sources should be scientifically valid, and fully documented including references to published material.

Surveillance information gathered from the same country or compartment at different times may provide cumulative evidence of animal health status. Such evidence gathered over time may be combined to provide an overall level of confidence. For instance, repeated annual surveys may be analysed to provide a cumulative level of confidence. However, a single larger survey, or the combination of data collected during the same time period from multiple random or non-random sources may be able to achieve the same level of confidence in just one year.

Analysis of surveillance information gathered intermittently or continuously over time should, where possible, incorporate the time of collection of the information to take the decreased value of older information into account.

SURVEILLANCE TO DEMONSTRATE FREEDOM FROM INFECTION

4. International recognition of freedom from infection

4.1. Introduction

This section provides general principles for declaring a country or zone/region or compartment free from disease/infection in relation to the time of last occurrence and in particular for the recognition of historical freedom.
The provisions of this section are based on the principles described in sections 1 to 3 of this chapter and the following premises:

1) in the absence of disease and vaccination, the animal population would become susceptible over a period of time;

2) the disease agents to which these provisions apply are likely to produce identifiable clinical signs in susceptible animals.

3) competent and effective Veterinary Services will be able to investigate, diagnose and report disease, if present;

4) the absence of disease/infection over a long period of time in a susceptible population can be substantiated by effective disease investigation and reporting by the Veterinary Services of an OIE Member Country.

4.2. Additional requirements to declare a country or compartment free from infection without pathogen specific surveillance

4.2.1. Historically free

Unless otherwise specified in the relevant disease chapter, a country or zone/region may be recognised free from infection without formally applying a pathogen-specific surveillance programme when:

a) there has never been occurrence of disease; or

b) eradication has been achieved or the disease/infection has ceased to occur for at least 25 years, provided that for at least the past 10 years;

c) it has been a notifiable disease;

d) an early detection system has been in place;

e) measures to prevent disease/infection introduction have been in place; no vaccination against the disease has been carried out unless otherwise provided in the Terrestrial Code.

f) Infection is not known to be established in wildlife within the country or zone/region intended to be declared free. (A country or zone cannot apply for historical freedom if there is any evidence of infection in wildlife. However specific surveillance in wildlife is not necessary).

4.2.2. Last occurrence within the previous 25 years

Countries or zones/regions that have achieved eradication (or in which the disease/infection has ceased to occur) within the previous 25 years, should follow the pathogen-specific surveillance requirements in the Terrestrial Code if they exist. In the absence of specific requirements for surveillance in the Terrestrial Code, countries should follow the general guidelines for surveillance to demonstrate animal health status outlined in this chapter provided that for at least the past 10 years:

a) it has been a notifiable disease;

b) an early detection system has been in place;
Appendix IV (contd)

c) measures to prevent disease/infection introduction have been in place;

d) no vaccination against the disease has been carried out unless otherwise provided in the Terrestrial Code.

e) infection is not known to be established in wildlife within the country or compartment intended to be declared free. (A country or zone cannot apply for historical freedom if there is any evidence of infection in wildlife. However specific surveillance in wildlife is not necessary).

4.3. Guidelines for the discontinuation of pathogen-specific screening after recognition of freedom from infection

A country or zone/region that has been recognised free from infection following the provisions of the Terrestrial Code may discontinue pathogen-specific screening while maintaining the infection-free status provided that:

1) it is a notifiable disease;
2) an early detection system is in place;
3) measures to prevent disease/infection introduction are in place;
4) vaccination against the disease is not applied;
5) infection is known not to be established in wildlife.(Specific surveillance in wildlife has demonstrated the absence of infection).

4.4. International recognition of disease/infection free status

For diseases for which procedures exist whereby the OIE can officially recognise the existence of a disease free country or zone/region, a Member Country wishing to apply for recognition of this status shall, via its Permanent Delegate, send to the OIE all the relevant documentation relating to the country or zone/region concerned. Such documentation should be presented according to guidelines prescribed by the OIE for the appropriate animal diseases.

4.5. Demonstration of freedom from infection

A surveillance system to demonstrate freedom from infection should meet the following requirements in addition to the general requirements for surveillance outlined in section 3.2 of this chapter.

Freedom from infection implies the absence of the pathogenic agent in the country or zone/region or compartment. Scientific methods cannot provide absolute certainty of the absence of infection. Demonstrating freedom from infection involves providing sufficient evidence to demonstrate (to a level of confidence acceptable to Member Countries) that infection with a specified pathogen is not present in a population. In practice, it is not possible to prove (i.e., be 100% confident) that a population is free from infection (unless every member of the population is examined simultaneously with a perfect test with both sensitivity and specificity equal to 100%). Instead, the aim is to provide adequate evidence (to an acceptable level of confidence), that infection, if present, is present in less than a specified proportion of the population.

However, finding evidence of infection at any level in the target population automatically invalidates any freedom from infection claim.

Evidence from non-random data sources as stated before, may increase the level of confidence or be able to detect a lower level of prevalence with the same level of confidence compared to structured surveys.
5. **Surveillance for distribution and occurrence of infection**

5.1. **General principles**

Surveillance for distribution and occurrence of infection or of other relevant health related events is widely used to assess progress in the control or eradication of selected diseases and pathogens and an aid to decision making. It has, however, relevance for the international movement of animals and products when movement occurs among infected countries.

In contrast to surveillance to demonstrate freedom from infection, surveillance used to assess progress in control or eradication of selected diseases and pathogens is usually designed to collect data about a number of variables of animal health relevance, for example:

- Prevalence or incidence of infection,
- Morbidity and mortality rates,
- Frequency of disease/infection risk factors and their quantification when the risk factors are expressed by continuous [real numbers] or discrete [integers] variables,
- Frequency distribution of herd sizes or the sizes of other epidemiological units,
- Frequency distribution of antibody titres
- Proportion of immunised animals after a vaccination campaign,
- Frequency distribution of the number of days elapsing between suspicion of infection and laboratory confirmation of the diagnosis and/or to the adoption of control measures,
- Farm production records, etc.

All of the listed data may also have relevance for the risk analysis.
RECOMMENDATION

OIE International Conference
on the Control of Infectious Animal Diseases by Vaccination
Buenos Aires, Argentina, 13-16 April 2004

The Importance of Vaccination in the Control and Eradication
of Infectious Animal Diseases

CONSIDERING THAT

1. Preventing the spread of animal disease through international trade of animals and animal products is one of the primary missions of the World Organisation for Animal Health (OIE). This is accomplished by establishing and updating international standards and guidelines that prevent spread of pathogens while avoiding unjustified sanitary barriers.

3. The collection, analysis and dissemination of veterinary scientific information is also one of the main missions of the OIE.

4. The standards developed by the OIE are recognised as international standards for animal health and zoonoses by the Agreement on the Application of Sanitary and Phytosanitary Measures (SPS) of the World Trade Organization (WTO).

5. Infectious animal diseases and zoonoses represent a major constraint to the maintenance and development of livestock and present a major threat to public health and livelihood of farmers especially in developing countries, and to national economies.

6. During the past few years, the world has witnessed the emergence and re-emergence of several infectious animal diseases that have had a major impact on animal and human health. These have severely affected the economy of developed as well as developing countries.

7. New scientific and technological knowledge for the prevention of many of these infectious diseases could contribute to the development of safer and more efficacious vaccines and diagnostic tests.

8. For ethical, ecological and economical reasons, it is no longer acceptable to control and eradicate disease outbreaks mainly by applying mass slaughter of animals.

9. Vaccines help to improve animal health, public health, animal welfare, and agricultural sustainability; to protect the environment, maintain biodiversity, and protect consumers of animal products.

10. The OIE, being the international reference organisation for animal health and zoonoses has incorporated wherever possible into its standards, the best “state of the art” scientific knowledge on the use of appropriate diagnostic tests, disease prevention and control by vaccination.
11. Vaccination is without doubt one of the most useful single measures which can be used to prevent animal diseases, and, veterinary science has since its inception been strongly linked with the development of vaccinology.

12. Vaccination has proved its capacity to help prevent, control, and eradicate disease as exemplified by smallpox, rinderpest and rabies.

13. Recent scientific advances in the diagnostic field, in particular the possibility to differentiate vaccinated animals from those that have undergone pathogen replication as a result of natural challenge, have been recently incorporated into the Terrestrial Manual. Their implications have either already been reflected or are being currently discussed in the OIE in order to amend the Terrestrial Code for disease control and recovery of disease free status after an occurrence of a disease.

14. This International Conference is based on the valuable experience gained in the control and elimination of foot and mouth disease and other significant animal diseases and zoonoses through the use of vaccination.

15. The Conference is an opportunity for the exchange of the latest scientific information at the global level that will, at the same time, assist in the evaluation and improvement of the current OIE standards and guidelines for better control of animal infectious diseases.

16. For this event, the OIE has acted in collaboration with the International Association for Biologicals (IABs), which has a long and valuable tradition in the dissemination of the most relevant scientific information on human and animal health,

CONFERENCE ATTENDEES OF THE OIE INTERNATIONAL CONFERENCE ON THE CONTROL OF INFECTIOUS ANIMAL DISEASES BY VACCINATION RECOMMEND THE FOLLOWING:

1. Current approaches to animal disease prevention, control, and eradication by vaccination be reviewed wherever possible according to the latest scientific information and incorporated into the OIE standards, recommendations and guidelines in order to facilitate both animal disease control and trade in animals and animal products.

2. Whenever feasible, OIE should provide standards that take into account vaccination policies as alternatives to mass slaughtering of animals.

3. Greater emphasis should also be placed on the use of vaccination for the control of food-borne and other zoonotic diseases in animals in order to safeguard public health. This may include wildlife reservoirs of pathogens.

4. The OIE develop and incorporate into its standards, recommendations and guidelines all relevant new information on diagnostic tests and the effective prevention, control and subsequent eradication of infectious animal diseases by vaccination.

5. The OIE request Member Countries to produce and use vaccines manufactured, tested and approved according to the OIE standards and guidelines in order to improve their safety and potency. The same principles should apply to diagnostic tests.

6. The OIE encourage Member Countries to strengthen the capacity of their antigen and vaccine banks to control emerging or re-emerging infectious diseases and zoonoses.

7. The OIE recommend the development of more flexible marketing authorisation regulations in order to be able to adapt vaccines to the epidemiological situation in the field when facing pathogens with multiple serotypes as exemplified by vaccines against human influenza; provided good epidemiological tools are in place.
8. The OIE support all research efforts in veterinary vaccinology and encourage funding agencies to put research on new veterinary biological products on their agendas and priorities. Public research is still needed to fill the gap where the private sector does not invest in new products due to the lack of foreseen investment return.

9. The OIE should provide on official request from Member Countries, international standards and general information on antigen and vaccine banks availability.

10. The OIE encourage other international and regional organisations to adopt a similar approach in the control and eradication of infectious animal diseases by vaccination.

11. The OIE and the International Association for Biologicals (IABs) disseminate all information concerning this International Conference to OIE Member Countries, international and regional organisations and other stakeholders.

12. The OIE refer the scientific information generated and discussed at this International Conference, as well as this Recommendation to the OIE Regional and relevant Specialist Commissions before submission for endorsement by the OIE International Committee.

(These recommendations, along with the quality veterinary biologics available worldwide, support the position that veterinary vaccinology can help to build a better world).

(Adopted by the OIE International Conference on the Control of Infectious Animal Diseases by Vaccination 16 April 2004)