INTERNATIONAL CALL FOR TENDER

Scheme for scientific activities to support the control of selected horse diseases—OIE call for proposals

Background

In 2013, subsequently to the signing of a Cooperation Agreement with the Fédération Équestre Internationale (FEI), the OIE formally engaged in a public-private partnership with FEI and the International Federation for Horseracing Authority (IFHA) with the main aim to establish, within the context of the existing OIE standards, new standards and guidelines to facilitate the temporary importation of horses for competition and racing purposes with a minimum risk of infectious disease transmission.

IFHA has provided specific financial support to the OIE in order to conduct studies and research projects related to equine influenza, African horse sickness and glanders, with main emphasis on the validation or development of improved diagnostic methods and vaccines for equine diseases of importance for international movement and health certification.

The current International Call for Tender is launched in this context, in order to identify suppliers which can successfully undertake the corresponding studies and research projects.

The Call for Tender is structured in two distinct lots with different projects per lot. The lots are as follows:

1. **Lot 1 : Test validation**
 1.1 Validation study of a serological diagnostic assay with high specificity and sensitivity for glanders in equids
 1.2 Validation study of a serological diagnostic assay for African Horse Sickness
 1.3 Validation study on real time RT-PCR diagnostic assay(s) for equine influenza in horses
 1.4 Evaluation of comparative performance of rapid antigen detection immunoassay kits for equine influenza

2. **Lot 2 : Prevention and Control**
 2.1 Evaluation of vector protection methods during transport of horses from African Horse Sickness endemic countries
 2.2 Estimation of the equine population at risk of and to be protected against AHS by a DIVA AHS vaccine
 2.3 Evaluation of current equine influenza vaccination protocols prior to shipment, guided by the OIE Standards
 2.4 Evaluation on the availability and efficacy of available African Horse Sickness vaccines and vaccine candidates

Suppliers can tender for single or several projects in each lot, or a combination of several projects across different lots. The allocation of two or three projects to a single supplier should allow for economies of scale. Bidders are invited to be very specific in their proposals and clearly state for which lot(s) and which project(s) they are tendering.

Tenders should be submitted in English.
Lot 1: Test validation

1. **Description of the Activities**

The specific studies to be conducted are listed below:

1.1 **Validation study of a serological diagnostic assay with high specificity and sensitivity for glanders in equids**

Background

Glanders is a serious zoonotic disease that primarily affects equids. It results from the infection by *Burkholderia mallei*. Glanders has been eradicated from many countries, but it persists in numerous Asian, African and South American countries and can be considered a re-emerging disease.

In horses, the disease can take a chronic course. Chronic and subclinical cases can be sources of infection due to the persistent or intermittent shedding of bacteria leading to spread of the disease. The OIE Terrestrial Animal Health Code recommends that equines from countries infected with glanders be tested, during the 30 days before shipment (Chapter 12.10). The sensitivity of the glanders test used for the purpose of international trade or movement is crucial; false-negative glanders test results may lead to the introduction of the infectious agent into a glanders free-region. A strong consideration must also be given to the test specificity, since false-positive glanders test results may lead to unnecessary restrictions on international trade of animals and result in financial losses for owners and the equine industry.

The Complement Fixation (CF) test is the OIE-prescribed sero-diagnostic method for glanders for international trade (OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals – Chapter 2.5.11), however its specificity has been questioned. Other serological tests such as Enzyme-linked immunosorbent assays and immunoblot assays have been developed and show promise but have not been fully validated yet.

Purpose of the research project

The aim of this project is to support the validation of a serological diagnostic assay with high specificity and sensitivity for glanders in equids for the purpose of certifying freedom from infection in individual animals for trade or movement.

The expected result is a full description of a serological test for glanders in equids validated for the first three stages of the OIE validation pathway (OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 1.1.5, Principles and methods of validation of diagnostic assays for infectious diseases and Guidelines 3.6, 3.6.1, 3.6.5, 3.6.6).

The service required

- Further development and finalisation of validation of tests that are in the final stages of development and that have given promising results (including, where relevant, data from previous publications);
- Special attention should be given to the inclusion of field samples from endemic countries in the validation tests;
- Demonstration that the OIE validation pathway has been followed (first three stages) in the context of “fitness for purpose” for certification for international movement;
- Collaboration between laboratories is encouraged, particularly those in glanders endemic countries, with laboratories in non-endemic regions that have expertise and a proven record of working with glanders diagnostic assays;
- For tests in the final stages of development, collaboration with a commercial partner interested in taking up the test for commercialisation in the final stages of validation is encouraged.
Deliverables

The study should be presented in form of a report detailing the procedures and statistical analyses used for validation and giving the protocol of the validated assay(s), following the layout as presented in the OIE Manual, Chapter 2.5.11.

1.2 Validation study of a serological diagnostic assay for African Horse Sickness

Background

African horse sickness (AHS) is a serious, often fatal, arthropod-borne viral disease of all species of equidae. It is transmitted between equines by midges of the genus Culicoides. Since 2012, AHS has been included into the group of diseases for which the OIE provides recognition of disease freedom to countries or parts thereof. The OIE Terrestrial Animal Health Code (Chapter 12.1) stipulates, amongst other conditions, that for a country or zone to be defined as free from AHS, a surveillance programme must have demonstrated no evidence of AHS virus for at least 2 years. These surveillance programmes are usually large-scale operations which require good serological tests. The Complement Fixation test and indirect and competitive blocking ELISAs are the OIE-recommended tests for AHS for surveillance (OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals – Chapter 2.5.1). Monitoring diagnostic assays’ performance is necessary to assure that their performance characteristics are maintained over time. However, the published data supporting the performances of the OIE prescribed ELISA diagnostic assays date from 1998.

Purpose of the research project

The aim of this project is to support the validation of a serological assay for AHS in horses with optimal fitness for the purpose of improved surveillance accuracy. The expected result is a full description of a serological test for AHS in horses validated for the first three stages of the OIE validation pathway (OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 1.1.5, Principles and methods of validation of diagnostic assays for infectious diseases and Guidelines 3.6, 3.6.1, 3.6.5, 3.6.6).

Service required

- Validation of tests that are already in use, or further development and finalisation of validation for tests that are in the final stages of development and that have given promising results (including, where relevant, data from previous publications); special attention should be given to the inclusion of field samples from both endemic and officially free countries in the validation process;
- Generation of reference reagents, specifically antisera;
- Demonstration that the OIE validation pathway has been followed (first three stages) in the context of “fitness for purpose” for surveillance;
- Collaboration between laboratories is encouraged, particularly those in AHS endemic countries with laboratories in non-endemic regions that have expertise and a proven record of working with AHS diagnostic assays;
- For tests in the final stages of development, collaboration with a commercial partner already manufacturing serological diagnostic assays for AHS or a commercial partner interested in taking up the test for commercialisation in the final stages of validation, is encouraged.

Deliverables

- The study should be presented in form of a report detailing the procedures used for validation and statistical analyses, and giving the protocol of the validated test(s), following the layout as presented in the OIE Manual, Chapter 2.5.1.
1.3 Validation study on real time RT-PCR diagnostic assay(s) for equine influenza in horses

Background

Equine influenza is a highly contagious disease since infected animals can begin to excrete the virus before showing clinical signs. Equine influenza vaccination is practised in most countries, and competition horses are required to be vaccinated. However, due to the variability of the strains of virus in circulation (antigenic drift), and the difficulty in matching the vaccine strain to the strains of virus in circulation, vaccination doesn’t always prevent infection. Therefore vaccinated infected horses can still shed the virus and spread the infection and such a risk has to be taken into consideration to safeguard the high health status of horses competing at international events. The availability of agent identification tests with high diagnostic sensitivity is paramount in that regard.

Isolation of the virus and serological tests are traditional diagnostic methods for equine influenza as described in the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals – Chapter 2.5.7. However there is at present no OIE prescribed test for screening individual horses for freedom from infection, prior to international movement. Real time Reverse Transcriptase PCR (rt-RT-PCR) is a sensitive technique for the detection of equine influenza virus RNA and is of value to minimize the risk of disease incursions associated with horse movement. All four OIE reference laboratories from the Expert Surveillance Panel are using rt-RT-PCR protocols to diagnose equine influenza. However, these protocols are not yet fully validated in line with OIE requirements.

Purpose of the research project

To validate one (or more) equine influenza rt-RT-PCR assay(s) for equine influenza viral RNA detection in horses as fit for the purpose of certifying freedom from infection in individual animals for trade or movement.

The service required

Description of rt-RT-PCR assay(s) for equine influenza harmonised between OIE reference laboratories validated for the first three stages of the OIE validation pathway (OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 1.1.5, Principles and methods of validation of diagnostic assays for infectious diseases and Guidelines 3.6, 3.6.3, 3.6.5, 3.6.6). Each OIE reference laboratory participating in the validation project will supply to the other participants reference samples that represent the range of equine influenza virus RNA concentration to be detected by the assay. Special attention should be given to the inclusion of nasal/nasopharyngeal swabs from endemic countries in the validation tests.

The participants will also make available sufficient aliquots of the selected test samples for the entire validation process and for standardisation in the OIE reference laboratories and other diagnostic laboratories.

The project should include the generation of reference reagents suitable for supply to national laboratories for the ongoing standardisation of the assay.

Deliverables

The study should be presented in form of a report detailing the procedures used for validation and statistical analyses and giving the protocol of the validated assay(s), following the layout as presented in the OIE Manual, Chapter 2.5.7.

1.4 Evaluation of comparative performance of rapid antigen detection immunoassay kits for equine influenza

Background

Equine influenza is a highly contagious disease. Infected animals can begin to excrete the virus before showing clinical signs.

Equine influenza vaccination is practiced in most countries, and horses competing at international level are required to be vaccinated against equine influenza. However, due to the variability of the strains of
virus in circulation (antigenic drift), and the difficulty in matching the vaccine strains to the strains of virus in circulation, vaccination doesn’t always prevent infection. Therefore, vaccinated infected horses can still shed the virus and spread the infection. Such a risk has to be taken into consideration to safeguard the high health status of horses competing at international events. The availability of agent identification tests with high diagnostic specificity and sensitivity is paramount in that regard.

Isolation of the virus and serological tests are traditional diagnostic methods for equine influenza as described in the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals – Chapter 2.5.7. Reliable rapid immunoassay kits based on antigen detection could be of value for the purpose of testing individual animals in the context of international horse movements, e.g. on arrival at the competition venue.

Purpose of the research project
The aim of this project is to provide a comprehensive overview on performance of commercially available rapid antigen detection immunoassay kits for equine influenza, and candidate kits, that may be suitable for testing individual horses (vaccinated and unvaccinated) for presence of the virus.

Service required
- Compare available rapid influenza antigen detection immunoassays kits (and if relevant, promising candidate tests) on the basis of their characteristics and performances for the detection of equine influenza viruses in equines by subjecting them to direct comparisons in controlled conditions;
- Assess the opportunities and conditions for recommending the use of rapid antigen detection immunoassays kits for the purpose of testing individual horses (vaccinated and unvaccinated) for the presence of the virus.

The study should be based on a literature search, and sensitivity and specificity assessment in animal experiments.

Deliverables

The study should be presented in form of a report detailing the above listed points with clear recommendations regarding currently available commercial products and identifying gaps for future research.

2. The supplier(s) of services
The potential profile of the bidder is: Laboratory(ies) and their partners with expertise in test development and validation for the respective disease, as per:

(i) proven record of publication or
(ii) OIE Reference lab for the disease or
(iii) national Reference lab for the disease

Indicative upper budget limit for each of the four above mentioned studies: 80.000 €
Lot 2: Prevention and Control

1. **Description of the Activities**
The specific studies to be conducted are listed below:

2.1 **Evaluation of vector protection methods during transport of horses from African Horse Sickness endemic countries**

Background
African horse sickness (AHS) is a serious, often fatal, arthropod-borne viral disease of all species of equidae. It is transmitted between equine hosts by midges of the genus *Culicoides*. Since 2012, AHS has been included into the group of diseases for which the OIE provides recognition of disease freedom to countries or parts thereof.

Preventing infected equids from being bitten by midges is a critical measure to stop the transmission chain of the disease, and it is therefore one of the key requirements to allow animals' movements from, or through, an AHS infected zone.

In this regard, the OIE Terrestrial Animal Health Code recommends an isolation in a vector-protected establishment before animals' importation from AHS infected countries or zones, and vector protection for animals from AHS free countries or zones when transiting through an infected zone, as well as protection from *Culicoides* attacks at all times during transportation (Code Articles 12.1.6 and 12.1.7). The OIE Terrestrial Animal Health Code also recommends certain means of protection for vector-protected establishments or facilities and during transport by road and by air (Code Article 12.1.10).

Transport by road to and from the vector-protected establishments or facilities to other establishments or an airport for onward air transportation is a critical part of the entire vector-protection process for the purpose of export. Many methods exist, such as insecticide application and netting of transport vehicles and air stalls, some of which compromise ventilation and therefore animal welfare aspects of transportation.

Purpose of the research project
The aim of this project is to propose improved requirements for vector protection measures of a physical and chemical nature to protect the loading and transport process of horses for the purpose of export from AHS endemic countries.

The service required
- Technical description and specifications of the physical measures to be installed in horse transporters and air stalls that do not compromise the horses welfare;
- Description of the chemical measures (insect repellents; insecticides and their combined use) that can be used to protect particularly during the loading process;
- Back up of proposals with evidence either from scientific studies and/or published literature
- Describe different scenarios in terms of maximum distance that can be covered during transport and the degree of vector protection required;
- If feasible, description of a monitoring system to prove the absence of vectors during transport;
- Provide a cost estimate to provide vector protection during loading and transport.

Deliverables
- The study findings should be presented in form of a report, which should use graphics and detailed technical descriptions and give technical specifications for recommended materials.
2.2 Estimation of the equine population at risk of and to be protected against AHS by a DIVA AHS vaccine

Background

African horse sickness (AHS) is a serious, often fatal, arthropod-borne viral disease of all species of equidae. It is transmitted between equine hosts by midges of the genus Culicoides. Since 2012, AHS has been included into the group of diseases for which the OIE provides recognition of disease freedom to countries or parts thereof.

Live attenuated AHS vaccines are commercially available and have been routinely used for control in endemic regions. However, that type of vaccine may not be considered safe by some trading partners and this can severely impede the capacity of the countries vaccinating against AHS to export live horses.

The development of commercially available, safe, effective AHS vaccines, that enable differentiation between infected and vaccinated animals (DIVA) would encourage greater confidence between trading partners.

The equine population at risk of infection with AHS needs to be estimated in order to gain a good understanding of the number of equines that could be protected against the disease by such a DIVA vaccine.

Purpose of the research project

Estimate the equine population to be protected for an AHS vaccine considered acceptable to most trading partners. The expected result is an estimation of the horse population, including sport as well as working horses, in endemic countries, as well as additional needs for such a vaccine, e.g. in form of vaccine banks, if so identified.

Service required

- Estimation of eligible horse population in endemic countries (through interviews with the respective sport associations, farmers associations, statistics offices, literature, and, if deemed feasible, modelling)
- Differentiation into different groups of horses, e.g. sport (FEI, racing, polo, leisure, breeding etc), local horses, working horses and associated likelihood of opting for vaccination, should it be available, effective, safe, and allowing a differentiation between infected and vaccinated animals
- Estimation of the maximum cost per dose of vaccine that would be acceptable to the different groups of horse owners
- Estimation of vaccine quantities required by AHS free countries/regions should they be interested in setting up vaccine banks.

Deliverables

The study should be presented in form of a report detailing the findings on the above listed points with clear recommendation regarding the potential market for a new, effective AHS vaccine.

2.3 Evaluation of current equine influenza vaccination protocols prior to shipment, guided by the OIE Standards

Background

According to the FEI Veterinary Rules and to the IFHA Guidelines, competing horses must be vaccinated against equine influenza. OIE also provides recommendations for equine influenza vaccination for international movements and trade (OIE Terrestrial Animal Health Code Chapter 12.6). The FEI and IFHA recommendations regarding equine influenza vaccination are not harmonised and are not in line with the OIE Standards (see comparison in Annex I).
Purpose of the research project
The aim of this study is to provide a science-based rationale to identify the ideal time period for vaccination prior to shipment, in support of the harmonisation of the FEI and IFHA recommendations with regard to equine influenza vaccination prior to shipment, guided by the OIE Standards.

Service required
- Explain the origin and rationale of the differences in vaccination schedules for race horses versus FEI horses;
- Literature review on equine influenza vaccinal immunity dynamics;
- Literature review on equine influenza virus shedding and infectivity in infected vaccinated horses, including after the stress of long-distance transportation;
- If deemed feasible, include clinical trials for determination of the ideal time period for vaccination prior to shipment;
- Science-based recommendation for a standardised FEI-IFHA equine influenza vaccination protocol (which may include, if scientifically relevant, proposals for revising the OIE standards for equine influenza vaccination prior to shipment);
- Recommendations as to equine influenza vaccination best practices;
- Identify any knowledge gap and further study that might be needed.

The study should be based on a literature search, visits, interviews and if feasible, clinical studies.

Deliverables
The study should be presented in form of a report detailing the above listed points with clear recommendations to the industry and, if deemed justified, to the OIE regarding adaptation of the Code chapter.

2.4 Evaluation on the availability and efficacy of available African Horse Sickness vaccines and vaccine candidates

Background
African horse sickness (AHS) is a serious, often fatal, arthropod-borne viral disease of all species of equidae. It is transmitted between equine hosts by midges of the genus Culicoides. There are nine serotypes of AHSV. Since 2012, AHS has been included into the group of diseases for which the OIE provides recognition of disease freedom to countries or parts thereof. Live attenuated AHS vaccines (polyvalent or monovalent) are commercially available and have been routinely used for control in endemic regions. However, they may not be considered safe by AHS-free countries.

Alternative, commercially available, safe and effective AHS vaccines to prevent AHSV infection of equids and vaccines that have properties to allow the differentiation of vaccinated from infected animals (DIVA) would be desirable for global use.

Purpose of the research project
The aim of this project is to provide a comprehensive overview of currently existing AHS vaccines and promising vaccine candidates for the development of a DIVA vaccine and associated diagnostic method.

Service required
- List companies currently producing AHS vaccines at commercial scale and describe availability of these vaccines in different countries and regions;
- List laboratories that are currently engaging in AHS vaccine development;
- Provide assessment of state of development of vaccine candidates for DIVA technology;
- Analyse available information and consider timelines to commercialisation;
- Compare vaccine candidates on the basis of their characteristics and DIVA capacity;
- If possible, estimate costs for commercialisation of DIVA vaccine candidate/s and associated diagnostic methods.

The study should be based on a literature search, visits and interviews.

Deliverables

The study should be presented in form of a report detailing the above listed points with clear recommendations regarding the availability of promising vaccine candidates.

2. **The supplier(s) of services**

The potential profiles of bidders are:

- Individual experts with proven expertise in the area, e.g. by publications or relevant other consultancies;
- Universities (postgrad students; lecturers) with proven expertise in this field;
- Government departments in collaboration with scientific bodies.
- Laboratories with expertise in the respective disease as per (i) proven record of publication or (ii) OIE Reference lab for the disease or (iii) national Ref lab for the disease

Indicative upper financial limit for each of the four above mentioned studies: 70,000 €
Part B - Administrative Provisions

1. Duration of the Contract
The initial Contract negotiated with the selected service provider(s), once the service provider has been officially selected and notified, will have a maximum duration of 2 years for projects in Lot 1 and of 18 months for projects in Lot 2. The contract may be extended by mutual agreement through consecutive amendments.

2. Financial Conditions
The price of the service and the payment conditions proposed will be important criteria in the selection of the proposal. The applicants should make a proposal regarding the cost of the service and the payment conditions. The OIE expects the tenderers to demonstrate economies of scale when submitting a tender for two or three lots.

Only eligible costs can be taken into account for determining the amount of the grant. The OIE may request clarification of financial provisions and modifications or reductions of some budget items before negotiating the contract and delivering the grant. Lump sums, flat fees, administrative costs, overheads are strongly discouraged.

The OIE expects as much transparency and detailed information as possible regarding the price structure. This information will be treated as confidential and will remain so.

Financial conditions and technical conditions will be evaluated jointly (see 7. Selection criteria).

3. Financial Penalties
If the supplier(s) does/do not respect the conditions mentioned in the contract, financial penalties will apply. These provisions will be foreseen in the contract.

4. Criteria and Selection process
In addition to the specifications listed above, criteria for the call for proposals are listed below.

The criteria examined remain unchanged throughout the procedure to ensure equality of treatment for all applicants. Over and above the proposed price, the following criteria may be considered:

- The financial, economic and professional (experience) capacity of the tenderers;
- The quality, including technical merit, aesthetic and functional characteristics, accessibility, design suitable for all users, social, environmental and innovative characteristics and marketing and related conditions;
- The organisation, qualifications and experience of the personnel assigned to perform the contract, when the quality of the personnel in question may have a significant effect on the level of performance of the project;
- After sales service, technical assistance and delivery conditions, such as delivery date, delivery method and period for delivery or completion;
- Format of deliverables to be aligned with the present Terms of Reference.

The OIE may require candidates to provide additional evidence on which to evaluate their financial, economic, technical or professional (experience) capacity.

Proposals will be opened by a tender opening committee, responsible for verifying that the tenders received have complied with the procedures for the receipt and presentation of tenders described in the documentation, and for preparing the list of projects deemed eligible.

The tender opening committee will proceed to the opening of the tenders at the OIE Headquarters.
Candidates may, at their own request, be represented at the tender opening session. The minutes of the session of the proposal opening committee may be sent to any candidate upon request.

Eligible tenders are then reviewed by an independent scientific tender selection committee. The tender committee checks the tenderers’ technical and financial qualifications to ensure that tenderers have the capacity to meet the specific needs of the proposed contract. The committee checks that the tenders meet the eligibility requirements specified in the tendering documentation.

Not all eligible tenderers will receive a grant.

5. Notification of the award of the grant
The OIE will inform each unsuccessful candidate, either in paper or electronically, that their tender has been rejected. On a written request by the party in question, the OIE will send the candidate having submitted an eligible tender, within six days of receiving the request, all appropriate information relating to the rejection.

The successful candidate(s) will be notified and invited to sign a contract with the OIE reiterating the terms and conditions for implementing the project and for awarding the grant, based on the final negotiation with the selected service provider(s).

6. Miscellaneous
The service provider(s) can be asked to provide additional related ad hoc technical advice linked to the aforementioned studies and research projects to the OIE upon request.

7. Content of the offer
All tenders must be submitted in one original, marked “original”, and 6 copies, marked “copy”. Each of these should be placed in a sealed envelope with the following:

Internal and external envelopes should all state in large bold letters¹:

\[
\begin{array}{|c|}
\hline
\text{CONFIDENTIEL} \\
\text{NE PAS OUVRIR À LA RÉCEPTION} \\
\text{Appel à propositions} \\
\hline
\end{array}
\]

and should be labelled as follows:

Monsieur le Directeur Général
Organisation Mondiale de la Santé Animale (OIE)
12, rue de Prony
F-75017 Paris
France

¹ “CONFIDENTIEL” (in French) means: “Confidential”; “Appel d’offres” (in French) means: “Call for tender” and “NE PAS OUVRIR À LA RÉCEPTION” (in French) means: “Do not open this mail at the front desk / reception desk / when received”. This should be written in French since OIE Headquarters are based in Paris, France and OIE reception desk staff handling incoming mail are French speaking.
The wording (iii) on the envelopes should also appear on the outside of the (plastic) wrapper if the offers are sent through commercial couriers or quick mail delivery services.

8. Procedure
The contact person at the OIE Headquarters during the period of preparation of the offers is Dr Susanne Munstermann. Contact: s.munstermann@oie.int

For the offer to be valid, it must be deposited and registered against receipt at the latest on 8 May 2015 at 12:00 (Paris time) at OIE Headquarters (address specified under 7 - above).

9. Appeals
Candidates believing that they have been harmed by an error or irregularity during the award procedure may lodge a complaint with the OIE. The OIE will address the candidate a reply within five days after receipt of the complaint.

If the OIE fails to address the complaint, the unsuccessful tenderer may request arbitration by the Permanent Court of Arbitration (PCA) at The Hague, governed by the PCA arbitration rules 2012 and the PCA Optional Rules for Arbitration between International Organisations and third Parties.

10. Confidentiality
The OIE and external persons that may be involved in the procedures shall refrain from divulging information that economic operators have submitted to them in confidence, including technical or trade secrets, financial details and other confidential aspects of their applications.
Recommendations for equine influenza vaccination

<table>
<thead>
<tr>
<th></th>
<th>FEI</th>
<th>IFHA</th>
<th>OIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary course</td>
<td>First vaccination</td>
<td>First vaccination</td>
<td>First vaccination</td>
</tr>
<tr>
<td></td>
<td>Second vaccination administered within 21-92 days of the first</td>
<td>Second vaccination administered within 4 - 6 weeks (=28-42 days) of</td>
<td>Second vaccination administered one month of the first vaccination</td>
</tr>
<tr>
<td></td>
<td>vaccination</td>
<td>the first vaccination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Third vaccination within 7 calendar months following the date of</td>
<td>Third vaccination within 5 calendar months following the date of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>administration of the second vaccination of the primary Course.</td>
<td>administration of the second vaccination of the primary Course.</td>
<td></td>
</tr>
<tr>
<td>Boosters</td>
<td>Minimum booster frequency: every 12 months.</td>
<td>Minimum booster frequency: every 12 months.</td>
<td>Minimum booster frequency: every 12 months.</td>
</tr>
<tr>
<td>Boost before</td>
<td>For Horses competing, the last Booster must have been given within</td>
<td>During the 60 days immediately prior to export from its country of</td>
<td>Immunised between 21 and 90 days before shipment</td>
</tr>
<tr>
<td>export/competition</td>
<td>6 months + 21 days (and not within 7 days) before arrival at the</td>
<td>origin, but not within 14 days of export</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Event.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Annex I