


[26] Doyle KA. An overview and perspective on orbivirus disease prevalence and occurrence of vectors in Australia and Oceania, 44-57.


[33] Gorman BM. An overview of the orbiviruses, 335-47.

[34] Gould AR, Eaton BT. Nature of the major neutralizing site of bluetongue viruses, 444-51.


[41] Hassan A. Epidemiology of bluetongue virus infection in Malaysia, 155-61.
[42] Hassan A. Status of bluetongue in the Middle East and Asia, 38-41.
[48] Huismans H, Staden Vv, Nel LH. Molecular comparison of the cognate genes of bluetongue, African horse sickness, and epizootic hemorrhagic disease viruses which encode nonstructural proteins NS2 and NS3, 348-57.
[58] Kline DL, Greiner EC. Field observations on the ecology of adult and immature stages of Culicoides spp. associated with livestock in Florida, USA, 297-305.


[65] Li JKK, Hwang GY. Identification of a serotypic neutralization epitope unique to VP2 of bluetongue virus serotype 13, 439-43.

[66] Li JKK, Yang YY. Biochemical and immunologic characterization of VP5 of five USA bluetongue viruses, 433-8.


[69] Lubroth J. The complete epidemiologic cycle of African horse sickness: our incomplete knowledge, 197-204.


[73] Maia MS, Osburn BI. Differential serologic responses to reassortant bluetongue viruses recovered from a cow ,776-80.

[74] Mattos CAd, Mattos CCD, Muir S, Osburn BI. The complete sequence of genome segment 10 from a virulent strain of USA bluetongue virus serotype 11, 471-6.

[75] Mattos CCD, Mattos CAd, Muir S, Osburn BI. The complete nucleotide sequence of genome segment 5 of a virulent strain of USA bluetongue virus serotype 11, 477-82.


[77] Mecham JO, Jochim MM. Comparison of the neutralizing immune responses of sheep and cattle to bluetongue viruses, 768-75.
[78] Mecham JO, Nunamaker RA. Viral serotype influences the infection rate of Culicoides variipennis with bluetongue viruses, 325-6.


[80] Mellor PS. Culicoides as potential orbivirus vectors in Europe, 278-83.


[89] Odeón AC, Giri SN, Osburn BI. Histamine and arachidonic acid metabolite levels during experimental infection of cattle with bluetongue virus serotype 11, 802-6.


[95] Papadopoulos O. Bluetongue and epizootic hemorrhagic disease in Europe and the European community, 34-7.


[101] Reeves WC. Effects of global warming on mosquito-borne diseases in California, 14-5.


[105] Roy P, Chuma T, Blois Hl, Hirasawa T. Molecular cloning of RNA segment 7 and synthesis of the major core antigen VP7 of African horse sickness viruses by recombinant baculovirus: its use as a group-specific diagnostic; reagent, 461-70.


[107] Sawyer MM, Carr MA, MacLachlan NJ, Yilma TD, Osburn BI. The use of the competitive ELISA to detect neutralizing antibodies resulting from superinfection with a heterotypic bluetongue virus serotype, 617-25.


[115] Sohn R, Yuill TM. Maintenance of epizootic hemorrhagic disease of deer viruses in North Dakota, 249.

[116] St. George TD. Occupation of an ecological niche in Pacific Ocean countries by bluetongue and related viruses, 76-84.


[122] Tabachnick WJ. Genetics, population genetics, and evolution of Culicoides variipennis: implications for bluetongue virus transmission in the USA and its international impact, 262-70.


[125] Theil KW, McCloskey CM. Rabbit syncytium virus is an orbivirus, 835-9.


[131] Wade-Evans AM, Mertens PPC, Bostock CJ. In vitro transcription of exact RNA copies of bluetongue virus genome segments from full-length cDNA clones, 376-82.


[133] Walton TE. Attenuated and inactivated orbiviral vaccines; Bluetongue, African horse sickness, and related orbiviruses. 851-5.

[134] Walton TE, Tabachnick WJ, Thompson LH, Holbrook FR. An entomologic and epidemiologic perspective for bluetongue regulatory changes for livestock movement from the USA and observations on bluetongue in the Caribbean basin, 952-60.

