Enhancing Health and Security for All

WHO Laboratory Biosafety Manual (LBM) Revision Update

Dr Kazunobu KOJIMA
World Health Organization (WHO)

2nd OIE Global Conference on Biological Threat Reduction

OTTAWA, CANADA
31 Oct–2 Nov 2017

WORLD ORGANISATION FOR ANIMAL HEALTH
Protecting animals, preserving our future
Presentation overview

• Background
• Key concepts
• Aiming to achieve
• Risk (hazard) groups
• Biosafety levels
• Core Requirements, Heightened Control Measures, High Containment
• Way forward
WHO Laboratory Biosafety Manual (LBM)

- LBM has served the global biosafety community for more than 30 years with practical guidance on biosafety

 - Risk Group: I, II, III and IV
 - "Laboratory Classification": Basic, Containment and Maximum Containment
 - "BSL" yet to be defined

- Technology
 - Common diagnostic methods
 - e.g. virus isolation, electron microscope
 → PCR PCR first demonstrated in 1983
LBM Evolution

- BSL 1-4

- Rapidly advancing technology

- The current 3rd edition has been translated into >10 UN official and other languages and WHO continues to receive requests for translation into other languages

- Published in 2004, 13 years have passed in this fast-evolving field

• Key Recommendation 2014
 – Revision to the WHO Biosafety Manual is both a necessary and a priority

• Key Recommendation 2016
 – General agreement for the proposed modifications to the manual, the revision of which remains a priority
Our audience varies...
Pragmatism?

Next Service / Certification date: Soonest
Issues in space and work flow
Issues in space and work flow
Pathogen (Hazard) versus Process (Likelihood)

Pathogen + Process = Risk

[Likelihood + severity of harm]
Biosafety Level 3?
Facility

• Sustainability:
 – Funding for construction vs. operational costs
 – Staff
 – Scientific programme

• Technical challenges
Good Microbiological Practices and Procedures (GMPP)

- Emphasis on risk assessment and training rather than engineering controls in GMPP

- The best designed and most engineered laboratory is only as good as its least trained worker

- Human factors are generally the cause of LAIs rather than malfunctions of engineering controls
Proposed Way Forward

• Ensure a practical, risk- and evidence-based approach to biosafety

• Flexibility

• Uphold good microbiological practices/procedures

• Encourage sustainable facilities
How?

• Refocusing on good microbiological practices and procedure

• Emphasising the importance of competence and on-going on-the-job training

• Highlighting what risk assessment is and how it should be performed

• To remove Risk Groups and Biosafety Levels at the global level to allow appropriate and practical measures are in place to mitigate the risk(s) identified
Concept

Risk (Hazard) groups ≠ Biosafety level
Factors affecting consequence

High severity or mortality plus:

- Low infectious dose
- High communicability
- Airborne route of transmission
- No preventive or therapeutic treatment available
- History of laboratory-acquired infection
- Exotic epidemiology (non-endemic)
- Highly susceptible population (e.g. immunocompromised, naïve)
- Increasing virulence
Procedures with high likelihood of exposure

- Producing and using large volumes and high titres
- Procedures that might have the potential to generate aerosols e.g. sonication, or deliberate generation of aerosols
- Infecting animals
- Using sharps
- Necropsy where infection is suspected
Procedures with low likelihood of exposure

- Use of agar plates (e.g. streaking, spreading)
- Serial dilution
- Preparing/staining slides
- Nucleic acid extraction
- Inactivation
- Use of autoanalysers
- ELISA
- PCR
- Rapid diagnostic tests
Risk assessment

High

Consequence of exposure or release

Likelihood of exposure

Core Requirements
(equivalent BSL2 minus BSC)

Heightened Control Measures (HCM)
(equiv. BSL2 + HCM e.g. BSC, extra PPE, containment up to and including BSL3)

Maximum Containment

(equiv. BSL4)
Core Requirements

• “Core requirements” refers to a combination of elements to be implemented and used as a minimum requirement for safe working during the majority of laboratory procedures.
 – codes of conduct
 – competent and appropriately trained staff
 – the laboratory facility/equipment
 – good microbiological practices and procedures.

• Core requirements will be fundamental to safe working practices of any facility.
Heightened Control Measures

Control Measures to be increased with...

...increased risk
Heightened Control Measures: Examples

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Process</th>
<th>Routes of exposure</th>
<th>Example controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>Diagnostic via PCR</td>
<td>- Aerosol</td>
<td>- Gloves, (RPE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Splash</td>
<td>- Work within a BSC prior to inactivation using validated methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Contact</td>
<td>- BSC work surface disinfection post use</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Culture</td>
<td>- Splash</td>
<td>- Double gloves, facial protection, RPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Aerosol</td>
<td>- Work within a BSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Work surface disinfection on test completion</td>
</tr>
</tbody>
</table>
Maximum Containment

Highest control

Example of when maximum containment might be required:

• Eradicated diseases such as smallpox

• Procedures with high likelihood of exposure and impact of release to the environment:
 – Unknown agents of potential high consequence
 – Known pathogens of high consequence
Plan of Action

- To create a central core document with
- Additional monographs that go into detail on several key aspects including
 - Risk assessment,
 - Biosafety programme management,
 - Laboratory design and maintenance,
 - Biological safety cabinets and isolators,
 - PPE,
 - Decontamination and waste management, and
 - Emergency/outbreak response
- Publication of a position paper prior to release of the LBM to outline the rationale for the changes
Acknowledgements

Editorial Committee:

Marianne Heisz, Public Health Agency, Canada
Allan Bennett, Public Health England, UK
Stuart Blacksell, Mahidol-Oxford Tropical Medicine Research Unit, Thailand
Michelle McKinney, National Institute of Health, USA
Kathrin Summermatter, Institute of Virology and Immunology, Switzerland
Catherine Makison Booth, Health & Safety Laboratory, UK

Global Partnership Program (GPP), Global Affairs Canada
Biosecurity Engagement Program (BEP), U.S. Department of State
Thank you

Dr Kazunobu KOJIMA

WHO HQ, Geneva

kojimak@who.int