REPORT OF THE MEETING OF THE
OIE TERRESTRIAL ANIMAL HEALTH STANDARDS COMMISSION

Paris, 17-28 January 2005

The OIE Terrestrial Animal Health Standards Commission (hereafter referred to as the Terrestrial Code Commission) met at the OIE Headquarters in Paris from 17-28 January 2005, and discussed some common issues with the Scientific Commission for Animal Diseases (hereafter referred to as the Scientific Commission) on 18 January 2005. The President of the Terrestrial Code Commission also met with the Aquatic Animal Health Standards Commission (hereafter referred to as the Aquatic Animals Commission).

The members of the Terrestrial Code Commission are listed in Appendix I. The agenda adopted is given in Appendix II.

The Director General of the OIE, Dr B. Vallat, welcomed the members and thanked them all for their willingness to participate in this important OIE work. He emphasised his strong commitment towards progress on some important texts, especially those concerning bovine spongiform encephalopathy (BSE) and avian influenza, as a result of the discussions at the 72nd General Session:

- regarding BSE, Dr Vallat was confident that the Member Countries would support a three category approach but the level of surveillance required remained an issue for many Member Countries; he supported the Terrestrial Code Commission’s emphasis on safe commodities and considered that ‘boneless skeletal muscle meat’ was an important commodity which needed to be discussed in depth in this regard;

- Dr Vallat considered that it was important for the Terrestrial Code Commission to harmonise the work done by experts and the Scientific Commission in revising the chapters and in drafting surveillance appendices for foot and mouth disease (FMD), BSE and avian influenza;

- Dr Vallat noted that the Terrestrial Code Commission’s proposals on avian influenza would be discussed at an upcoming conference on 7-8 April 2005 at the OIE Headquarters;

- Dr Vallat commended the work of the animal welfare experts in drafting guidelines on land and sea transport, slaughter for human consumption and killing for disease control purposes, and the Animal Welfare Working Group in coordinating this work;

- on bluetongue, Dr Vallat was of the view that it was important that the revised chapter being submitted for adoption reflected the outcomes of the 2003 OIE Bluetongue Conference in Sicily; subject to adoption of the chapter at the 73rd General Session, work on a surveillance appendix could commence;

- on food safety, Member Countries’ comments on the draft papers needed to be examined by the Working Group at its meeting in March 2005, and then reviewed by the Terrestrial Code Commission;
– on bovine tuberculosis, Dr Vallat was of the opinion that the experts’ recommendations regarding a revised chapter should be examined, and the chapter proposed for adoption; work could then commence on a review of the bovine brucellosis chapter;

– Dr Vallat noted that the Terrestrial Code Commission would be discussing new proposals for the OIE disease lists with the Aquatic Animals Commission and with the OIE Animal Health Information Department.

Dr Vallat encouraged the Terrestrial Code Commission and the Aquatic Animals Commission to continue their collaborative work on harmonisation of the two Codes.

The Terrestrial Code Commission was strongly supportive of the new transparency procedures for publication of Commission reports. Several members proposed that there be a discussion at the 73rd General Session on the addition of Member Countries’ comments to the material published on the OIE Web page; they considered that such publication would assist in improving participation of Member Countries in the development of OIE standards.

The Terrestrial Code Commission received comments from Australia regarding the inclusion of statements on the ‘national treatment’ obligations of Member Countries in individual chapters. The Terrestrial Code Commission felt that these obligations are adequately covered in Article 1.2.1.2. and therefore need not be duplicated in all Terrestrial Code chapters.

The Terrestrial Code Commission examined draft revised Terrestrial Code texts circulated for Member Countries’ comment by the Bureau of the Terrestrial Code Commission after its July 2004 meeting, and comments received on those texts. The outcome of the Terrestrial Code Commission’s work is presented as appendices to this report. Amendments made to existing chapters and previously circulated drafts are shown as double underlined text, with deleted text in strikeout. A grey background is used to distinguish amendments and deletions made at this meeting from amendments and deletions proposed in the same chapters or appendices at the meeting of the Bureau in July 2004.

The following Member Countries: Canada, Taipei China, the Southern Cone countries of South America, the United States of America (USA), Australia, New Zealand, Chile, the European Union (EU), Norway, Japan, Switzerland, Peru and El Salvador commented on the report of the Bureau of the Terrestrial Code Commission. The Terrestrial Code Commission strongly encourages Member Countries to participate in the development of the OIE’s international standards by sending comments in sufficient time for them to be considered by the Commission. It would assist the Terrestrial Code Commission if comments were submitted as specific proposed text changes, supported by a scientific rationale.

Member Countries are invited to comment on all aspects of this report. Comments need to reach the OIE Headquarters by 7 May 2005 in order to be reviewed prior to the 73rd General Session. Comments requiring minor changes to the Terrestrial Code will be considered at a meeting of the Bureau of the Terrestrial Code Commission just before the General Session, and a revised text presented for adoption by Member Countries. Comments requiring major changes will be deferred to the meeting of the Bureau of the Terrestrial Code Commission in July 2005.

A. TEXTS WHICH ARE SUBMITTED FOR ADOPTION BY THE INTERNATIONAL COMMITTEE AT THE 73rd GENERAL SESSION IN MAY 2005

1. General definitions (Chapter 1.1.1.)

 After further discussion with an expert, the Terrestrial Code Commission decided not to modify the term ‘artificial insemination centre’ (as proposed by Australia) as that term was the one accepted worldwide by the industry.

 After consideration of Member Countries’ comments on ‘buffer zone’ and ‘surveillance zone’, the Terrestrial Code Commission agreed that there was potential for confusion between the two definitions; as a result, the definition of ‘buffer zone’ was modified and the term ‘surveillance zone’ deleted. In the case of a free country or zone being contiguous with an infected country or zone, as the current definition had required that the ‘buffer zone’ be located in the infected country or zone, the free country or zone had not been in a position to establish or enforce any appropriate controls within such a zone. Under the modified definition, the free country or zone may implement certain necessary controls in the ‘buffer zone’ to protect its status, without those measures affecting its status. The Terrestrial Code Commission did not adopt the EU proposal on ‘buffer zone’ as it considered it too prescriptive.
The definition of ‘case’ was modified by the Terrestrial Code Commission in order to encourage reporting of diseases not listed by the OIE, including new emerging diseases and pathogens. The additional text in the definition of ‘emerging disease’ was designed to limit reporting to those pathogens or diseases showing a significant impact on animal or public health. A definition for ‘Competent Authority’ was proposed to address those situations where ‘Veterinary Services’ may be situated within a larger authority.

A definition of ‘notifiable disease’ (to be applied nationally) has been proposed. Another definition on notifiable diseases with reference to the OIE will be proposed in May 2005.

Several other modifications to the list of definitions were made in accordance with comments received from Member Countries, and after discussions with the Scientific Commission, the Aquatic Animals Commission and the Head of the Animal Health Information Department.

Suggested changes, shown in Appendix III, are presented for adoption.

2. Evaluation of Veterinary Services (Chapter 1.3.3.)

In response to the recommendation on the quality of Veterinary Services arising from the OIE/AU-IBAR seminar held in Cairo in October 2004, requesting that the OIE develop more detailed guidelines for the establishment and functioning of the ‘Veterinary Statutory Body’ and some guidelines for community animal health workers, the Terrestrial Code Commission requested the Director General to convene an ad hoc Group of experts to develop such guidelines.

The Terrestrial Code Commission noted the Cairo seminar recommendations on strengthening ‘Veterinary Services’ and urged Member Countries to implement fully the guidelines in the Terrestrial Code.

3. Zoning and compartmentalisation (Chapter 1.3.5.)

The Terrestrial Code Commission drafted a revised Chapter 1.3.5. following discussions with the Aquatic Animals Commission and the Scientific Commission. The aim of the revision is to provide more guidance to Member Countries on the procedures of zoning and compartmentalisation.

Explanatory examples of compartmentalisation for diseases of birds, mammals, crustaceans and fish have been drafted in conjunction with the Aquatic Animals Commission. Avian influenza and classical swine fever are presented as examples below but the full text may be found in the report of the Bureau of that Commission for the meeting of October 2004 (http://www.oie.int/aac/eng/commission/en_reports.htm).

Compartmentalisation for terrestrial animals

Compartmentalisation could be an appropriate approach to separate and protect a commercial poultry industry when dealing with avian influenza. In most countries or zones, one can recognize at least three types of poultry sub-populations: the commercial poultry industry, the traditional back yard poultry and wild birds (including migratory waterfowl). In most countries, differentiating domestic poultry from migratory birds is nearly impossible using the concept of zoning. While the separation of back yard birds and wild birds from individual commercial poultry operations can be achieved, it would be very difficult to demonstrate a different health status over widely separated parts of vertically integrated poultry enterprises using the concept of zoning. Therefore, compartmentalisation of the industrial poultry sector, based on strict and auditable biosecurity management protocols operated by individual enterprises, may be able to provide for safe trade in poultry and poultry products from this compartment even if other sectors cannot be declared free of avian influenza.
Compartmentalisation can also be applied to the differentiation of industrial swine production from traditional free-range pigs and wild pig populations, for example in cases where there is a risk from classical swine fever from wild pigs. Industrial swine production in most countries is vertically integrated, including all steps in the chain, from feed production, breeding, fattening and slaughter to primary processing. A systematic approach to managing the biosecurity at all steps of the production chain, with an identification of the critical control points and the accompanying auditing procedures may be able to provide for safe trade of pigs and pig products through compartmentalisation, even if the other pig sub-populations are affected by classical swine fever.

The revised Chapter 1.3.5. is submitted for adoption (Appendix IV).

4. General Guidelines for Animal Health Surveillance (Appendix 3.8.1.)

The Terrestrial Code Commission received from the Scientific Commission a revised appendix on general guidelines for animal health surveillance. In revising the appendix, the Scientific Commission indicated that it had taken into account comments received from Member Countries (Australia, New Zealand, the EU, the USA and Switzerland). Text shown as double underlined or strikeout indicates changes which have been made to the text which was circulated for Member Countries’ comment in July 2004.

It is proposed that this text be placed in Section 3.8. of the Terrestrial Code to serve as an introduction to the appendices dealing with surveillance of specific diseases. This new appendix would replace the content of the existing Chapter 1.3.6. (Surveillance and monitoring of animal health) and Appendix 3.8.1. (General principles for recognising a country or zone free from a given disease/infection). Definitions of ‘early detection system’ and ‘surveillance’, adopted via this Appendix, would replace those currently in Chapter 1.1.1.

The Terrestrial Code Commission presents this revised text (Appendix V) for adoption.

5. Criteria for listing diseases (Chapter 2.1.1.)

The Terrestrial Code Commission met with Drs Karim Ben Jebara and Julio Pinto, Head and Deputy-Head respectively of the OIE Animal Health Information Department, to discuss animal disease notification. The latest version of the OIE list of terrestrial diseases has been developed by an ad hoc Group on disease/pathogen notification by judging the diseases against the agreed criteria. The report of the November 2004 meeting of that ad hoc group is in Section C at Appendix XXVIII.

The Terrestrial Code Commission presents this revised list (Appendix VI) for adoption.

6. Foot and mouth disease (Chapter 2.2.10. and Appendix 3.8.7.)

In response to the comment received from the EU, the Terrestrial Code Commission’s view was that, in a vaccinated population where it can be demonstrated that vaccination had been carried out in accordance with the Terrestrial Manual, the maturation and deboning of meat should not be required for countries or zones free from foot and mouth disease with vaccination. The Scientific Commission endorsed this view.

In Article 5, the Terrestrial Code Commission removed the reference to ‘outbreak’ as, if an outbreak occurs, the country or zone would need to follow the recommendations in Article 7 for recovery of status.

The revised chapter is presented for adoption at Appendix VII.

The Terrestrial Code Commission is appreciative of the work of the Scientific Commission in revising the draft surveillance appendix for FMD (Appendix 3.8.7.). The Terrestrial Code Commission made some minor editorial changes in harmonising the draft with similar drafts for avian influenza and classical swine fever (CSF), and is presenting the appendix (Appendix VIII) for adoption.

7. Bluetongue (Chapter 2.2.13.)

The Terrestrial Code Commission discussed with the Scientific Commission Member Countries’ comments on the revised chapter on bluetongue. The Terrestrial Code Commission examined comments received from Member Countries but made changes only when scientific justification accompanied those comments; this approach was endorsed by the Scientific Commission.
The two Commissions were not aware of any new information to contradict the conclusions of the 2003 OIE Bluetongue Conference in Sicily regarding the infective period for bluetongue, and the Terrestrial Code Commission did not make any changes in this regard.

The comment from Australia that the terminology relating to the *Culicoides* vector be modified to ‘likely to support BTV transmission’ was not adopted as the Terrestrial Code Commission considered that its proposed wording ‘likely to be competent’ adequately addressed the biology of the vector population and used accepted terminology.

In response to comments from Australia and the EU, the period for which animals need to be vaccinated before movement was increased to 60 days to make it consistent with the accepted viraemic period.

The comment from Peru regarding the point of departure in Article 2.2.13.6. was not adopted as the definition ‘place of shipment’ was considered to adequately cover the intent of the Article.

After consulting with an expert, the Terrestrial Code Commission accepted changes recommended by the USA regarding the timing of serological testing in various articles relating to semen and embryo collection.

The revised chapter is presented for adoption (Appendix IX).

The Scientific Commission indicated that it was developing an appendix on surveillance for bluetongue.

8. **Bovine tuberculosis (Chapter 2.3.3.)**

The Terrestrial Code Commission received from the Scientific Commission a revised chapter on bovine tuberculosis based on the current Terrestrial Code chapter. The revision had been developed by an OIE ad hoc Group taking into account Member Countries’ comments, including on the zoonotic aspects of the disease.

In line with a recommendation from the Scientific Commission, references to hides and skins were deleted.

The revised chapter, with proposed modifications from the current chapter marked, is presented for adoption (Appendix X).

9. **Bovine spongiform encephalopathy (Chapter 2.3.13. and Appendix 3.8.4.)**

a) **Chapter 2.3.13.**

The report of the April 2004 meeting of the ad hoc Group on the BSE chapter (which was included in the report of the July 2004 meeting of the Bureau) is attached for completeness (Appendix XXIV).

The Terrestrial Code Commission was very appreciative of the detailed submissions received in support of its work on the proposed three category system, from the USA, the EU, Australia, New Zealand, Japan and Chile. The OIE Regional Commissions for Europe and the Americas also supported this approach. In addition, other Member Countries made comment on specific articles in this version (Peru, the Southern Cone countries of South America, Norway and Switzerland). An invited submission was also received from the gelatin manufacturing industries in Europe, South America, and Asia and the Pacific. Invited OIE experts also provided comments.

As a result of the outcome of the discussion on BSE at the 72nd General Session, the universal support in comments received and the endorsement from the Scientific Commission, the Terrestrial Code Commission decided to prepare for adoption a revised BSE chapter based on the three category system. Because of the significant time spent on BSE during its meeting (on the chapter and surveillance appendix), the Terrestrial Code Commission did no further work on the five category chapter which was an alternative proposal in the July report.

Within this support for a three category system, while Japan preferred a prevalence-based approach, most countries explicitly or implicitly supported a risk-based approach. The latter approach formed the basis for the changes proposed below by the Terrestrial Code Commission.
The Terrestrial Code Commission was of the view that the concern over hides and skins from the head has arisen from a potential for surface contamination of the hide by brain material following penetrative stunning methods. However, it believed that there were many conditions which would have to be met before the hypothetical likelihood of contamination translated into an actual risk to human health. Surface contamination of the hide would be eliminated through the routine industry processes of soaking of the hides for hair removal and subsequent washing. In addition, further processing steps, e.g. for extraction and conversion into gelatin, would help ensure the safety of the final product. The Terrestrial Code Commission has proposed that the exception for hides and skins from the head be removed.

With regard to blood and blood products, the Terrestrial Code Commission recalled the views of the BSE ad hoc Group which met in April 2004, that the information available indicated that bovine blood and blood by-products would be safe, subject to stunning having been carried out in accordance with Article 2.3.13.15. Accordingly, it has recommended that blood and blood products be placed in the first list of commodities (those which require no BSE-specific risk mitigation measures). (See Article 1, paragraph 1.)

The Terrestrial Code Commission was of the view that there was no scientific basis for considering that boneless skeletal muscle meat (excluding mechanically derived meat) was likely to contain BSE infectivity. Mouse and calf bioassays conducted on muscle tissue collected from clinical cases had not detected BSE infectivity. The Terrestrial Code Commission recommended that boneless skeletal muscle meat also be placed in the first list of commodities.

The Terrestrial Code Commission did not make changes to the factors to be considered in a risk assessment. The Terrestrial Code Commission followed the views of the BSE ad hoc Group in considering that the changes proposed by Australia and New Zealand (replacing TSEs with BSE) would have unnecessarily narrowed the scope of the risk assessment.

The Terrestrial Code Commission discussed the criteria listed in Article 2 for the determination of the BSE risk status of a country, zone or compartment. After considering submissions from several Member Countries that the surveillance burdens be commensurate with the BSE risk determined through a structured, formal science-based risk assessment, the Terrestrial Code Commission proposed that the formal surveillance requirements specified in Appendix 3.8.4. should not apply to those Member Countries where the BSE risk has been assessed as negligible. However, criteria 2, 3 and 4 of Article 2 would still apply, in particular the compulsory notification and investigation of all cattle showing clinical signs consistent with BSE. This is consistent with requirements for many other OIE listed diseases. The paragraphs in Article 2 on release and exposure assessments were modified at the recommendation of an OIE expert.

Several Member Countries requested that the text on the feed ban be strengthened and this was done in Articles 3 and 4. In addition, in Articles 3 and 4, the Terrestrial Code Commission has placed more emphasis on the risk assessment and less on prevalence. In Article 4, it could not identify any significant difference in final risk presented regarding whether indigenous BSE had occurred more or less than 7 years ago; accordingly, it has deleted paragraph 3) of Article 4 and reworded paragraph 2) to cover all circumstances in which there had been an indigenous case. The Terrestrial Code Commission considered that the significant difference between the requirements of Articles 3 and 4 was whether a Member Country could demonstrate that the appropriate generic measures had been in place for the relevant period of time.

The Terrestrial Code Commission recalled that the reason for the inclusion of a requirement for post mortem inspection was to ensure a minimum standard of professional involvement, particularly in countries where the removal of specified risk materials (SRMs) was required.

Comments from Member Countries which were essential to the revision of the three category approach were addressed by the Terrestrial Code Commission and have been included in the revised chapter; matters requiring consideration by BSE experts will be addressed after the 73rd General Session.
The articles in the proposed three category chapter have been temporarily numbered from 1 to 16 for ease of reference. The chapter (Appendix XI) is proposed for adoption.

b) Appendix 3.8.4.

The report of the ad hoc Group on surveillance for BSE is at Appendix XXIV for the information of Member Countries.

The Terrestrial Code Commission examined the appendix proposed by the experts and made some changes in line with the explanations below. The Appendix on surveillance for BSE (Appendix XII) is proposed for adoption.

A commonality among submissions received was that the current surveillance requirements should be modified. However, there were also significant differences among submissions. Some Member Countries recommended that high levels of surveillance and risk mitigation measures be applied in all countries while others recommended a more balanced approach between the level of risk identified through the process described in Article 2 of the proposed chapter, and the severity of mitigating measures and the intensity of surveillance. In this latter category were Member Countries (New Zealand, Chile and the Southern Cone countries of South America) recommending a significant reduction in surveillance burdens in countries which had already demonstrated negligible risk.

The Terrestrial Code Commission thanked Japan for its detailed submission. The calculations provided showed that, to prove a prevalence of less than one case in one million adult cattle, a greatly increased test load would need to be implemented. The EU also provided a detailed submission in which it reiterated its support for the BSurvE computer model. The Terrestrial Code Commission noted that the ad hoc Group had been reluctant to recommend the use, without adaptation, of this model by Member Countries. The Terrestrial Code Commission also noted that the EU had requested that the OIE assist the EU to undertake a peer-review of the model.

The Terrestrial Code Commission noted that the ‘point values’ used in the approach recommended by the ad hoc Group had not been selected arbitrarily but were derived from an in-depth statistical analysis of all EU (other than the United Kingdom [UK]) data on BSE cases detected by all methods of surveillance. The detailed submission received from the USA and comments from Norway supported this approach.

The Terrestrial Code Commission noted that the ad hoc Group on BSE surveillance would need to meet again after the 73rd General Session to further consider ‘maintenance surveillance’.

10. Transmissible spongiform encephalopathy agents inactivation procedures (Appendix 3.6.3.)

The revised text circulated for Member Countries’ comment in July 2004 (Appendix XIII) is proposed for adoption.

11. Classical swine fever (Chapter 2.6.7.)

The Terrestrial Code Commission considered the EU comment on Article 2.6.7.4. and reiterated its view that points b), c), d) and f) of paragraph 2 should be deleted and point g) of paragraph 2 modified as those measures were not required in order for a free country or zone to maintain its status.

In its meeting with the Terrestrial Code Commission, the Scientific Commission encouraged the Terrestrial Code Commission to include the concept of compartmentalisation in the revised chapter; this work will be done over the next year. Guidance will also be provided to Member Countries regarding the risk factors referred to in point 1) of Article 2.6.7.2.

The revised chapter is proposed for adoption (Appendix XIV).

The Terrestrial Code Commission is appreciative of the work of the Scientific Commission in developing a surveillance appendix for CSF. The Terrestrial Code Commission made some minor editorial changes in harmonising the draft with similar drafts for avian influenza and FMD, and is presenting the Appendix as clean text (Appendix XV) for adoption.
12. Highly pathogenic avian influenza (Chapter 2.7.12. and surveillance appendix)

a) Chapter 2.7.12.

During the 72nd General Session, a revised Terrestrial Code chapter on highly pathogenic avian influenza was adopted by the OIE International Committee, incorporating (under study) the Terrestrial Code Commission’s proposals. This revised chapter and the comments received until that time from Member Countries formed the basis for expert discussion at an ad hoc Group meeting in November 2004. The report of the ad hoc Group meeting is at Appendix XXV for the information of Member Countries. The views of the experts, comments received since November from Member Countries and two risk assessments from the UK Department of Environment, Farming and Rural Affairs (DEFRA) were considered by the Terrestrial Code Commission in its deliberations on the chapter.

Two DEFRA risk assessments:

confirmed that there was a negligible likelihood of introduction to a country of low pathogenic notifiable avian influenza (LPNAI) virus via fresh poultry meat or eggs for human consumption, originating from a country not known to be free from LPNAI virus.

The Terrestrial Code Commission appreciated the detailed comments provided by Taipei China, the EU, Japan and Chile. The concerns expressed by Chile and Japan regarding the safety of trading from an ‘NAI free establishment’ located within a compartment not known to be free from LPNAI, were considered. However, the Terrestrial Code Commission considered that deleting the term ‘NAI free establishment’ and allowing trade only from a NAI free compartment would unnecessarily restrict trade in genetic material.

The Terrestrial Code Commission addressed the concerns regarding commodities for human consumption (fresh meat and eggs), on basis of the above risk assessments and recently published information. The Terrestrial Code Commission has recommended (see Articles 2.7.12.13. and 2.7.12.21.) that these commodities should originate from establishments free from evidence of NAI for the previous 21 days. In making these recommendations, the Terrestrial Code Commission weighed the evidence for the low likelihood of LPNAI transmission against the possible negative effects onerous trade measures may have on Member Countries reluctance to report LPNAI. Failure to report LPNAI accurately will increase the likelihood of spread of the virus.

The comments of Member Countries regarding vaccination had been considered by the experts who did not recommend any changes to the current wording.

The revised chapter (Appendix XVI) is presented for adoption.

b) Surveillance Appendix

The Terrestrial Code Commission is appreciative of the work of the experts under the Scientific Commission in developing a surveillance appendix for avian influenza. The Terrestrial Code Commission made some minor editorial changes in harmonising the draft with similar drafts for CSF and FMD, and is presenting the Appendix (Appendix XVII) for adoption as clean text.

13. Semen and embryo related matters

The Terrestrial Code Commission consulted with an expert who briefed the Commission on the continuing work of the International Embryo Transfer Society (IETS) in categorising diseases and pathogens regarding the likelihood of their transmission via embryos. He noted for example that a non-peer reviewed paper had shown that embryos collected from FMD positive animals had not transmitted the disease into recipients.
Appendix 3.3.5. was modified in accordance with the IETS’ work and is submitted as clean text for adoption (Appendix XVIII).

The expert expected that new data on contagious bovine pleuropneumonia and lumpy skin disease would soon allow those chapters to be updated. The expert also examined the comments from the USA on the timing of testing for bluetongue, and his recommendations have been included in the text.

The Terrestrial Code Commission also discussed with the expert his work in combining Appendices 3.2.1. and 3.2.2. into a single appendix on bovine and small ruminant semen, which had been done at the request of the Terrestrial Code Commission. The Terrestrial Code Commission thanked the expert for his work and is submitting the new appendix as clean text (Appendix XIX) for adoption; if adopted, this new appendix would replace Appendices 3.2.1 and 3.2.2.

The expert also provided the following text on the Evaluation of risks that bovine embryos arising from fertilization with virus-infected semen will transmit infection to recipients which had been developed by the Research Subcommittee of the IETS Health and Safety Advisory Committee. The text will be used as a basis for future modifications to the relevant chapters and is included here for the information of Member Countries.

The proposed new EU legislation prompted a scientific literature review. From studies in laboratory animals, humans and horses, it is apparent that viruses may sometimes attach to, or be integrated into, spermatozoa. Although in domestic livestock, including cattle, this seems to be a rare phenomenon, and carriage of virus through the zona pellucida into the oocyte by fertilizing sperm has never been described in these species.

Four specific viruses: enzootic bovine leucosis virus (EBLV), bovine herpesvirus-1 (BHV-1), bovine viral diarrhoea virus (BVDV) and bluetongue virus (BTV), all of which tend to cause subclinical infections in cattle, but which can occur in bovine semen, might lead to production of infected embryos.

With regards to in vivo-derived embryos, when internationally-approved embryo processing protocols are used, the risks from EBLV- and BTV-infected semen appear to be negligible, and the same is almost certainly true for BHV-1 if the embryos are also treated with trypsin. This would apply especially to bulls that are not proven to be BHV-1 negative. For BVDV, there is insufficient data on how the virus is carried in semen and how different BVDV strains can interact with sperm, oocytes and embryos. There is a potential, at least, that in vivo-derived embryos resulting from virus-infected semen might carry BVDV, although field studies so far suggest this very unlikely.

With regard to in vitro-produced embryos, the use of semen infected with any of the four viruses, with probable exception of EBLV, will often lead to contaminated embryos, and virus removal from IVF embryos is difficult even when the internationally-approved embryos processing protocols are used. However, it has never been demonstrated that such embryos have resulted in transmission of infection to recipients or offspring.

14. Rift Valley fever

The expert proposed the addition of an article on embryos to the chapter on Rift Valley fever.

The revised chapter (Appendix XX) is presented for adoption.

15. Antimicrobial resistance (Section 3.9.)

The Terrestrial Code Commission received from the Biological Standards Commission revised appendices on the prudent use of antimicrobials and risk assessment for antimicrobial resistance. The Terrestrial Code Commission is presenting this text for adoption (Appendix XXI) as received from the Biological Standards Commission. It also received a definition for ‘antimicrobial agent’ (at Appendix III).
16. Animal welfare

The Terrestrial Code Commission commended the Working Group on Animal Welfare on coordinating the four ad hoc Groups which produced draft animal welfare guidelines on land and sea transport, killing for disease control purposes and slaughter for human consumption. The report of the most recent Working Group meeting (December 2004) is attached (Appendix XXVI).

The four texts are presented for adoption (Appendix XXII).

B. OTHER ISSUES CONSIDERED

17. Carcass disposal

The Terrestrial Code Commission received from the Scientific Commission a new text on carcass disposal. The Terrestrial Code Commission is presenting this text unchanged for consideration and comment by Member Countries (Appendix XXIII).

18. Animal identification and traceability

The Terrestrial Code Commission was briefed on the preparatory work underway in OIE Headquarters on animal identification and traceability, under the auspices of the Working Group on Animal Production Food Safety.

The aim of this work is to provide the Working Group with information on the current state of animal identification in the different OIE regions. The data were collected from the responses to an OIE questionnaire on ‘Animal Identification and Traceability’ circulated to OIE Member Countries in January 2004 and from additional information currently being collected. From this preliminary work, the lack of homogeneity of approach among OIE Member Countries on this issue is evident.

The Terrestrial Code Commission welcomed this work while noting that future guidelines on animal identification and traceability in the Terrestrial Animals Health Code would need to focus on both animal and public health issues. Such guidelines would have to propose various options for animal identification in order to take into account the identified differences existing among OIE Member Countries. Among those options, identification by herd or lot, and when relevant individual animal identification, would need to be examined.

The Terrestrial Code Commission also recognised that the OIE’s work in this field was a key point towards the application of zoning and compartmentalisation. The Terrestrial Code Commission concluded by inviting the Working Group on Animal Production Food Safety to produce terms of reference for an ad hoc Group on Animal Identification and Traceability to be convened by the Director General in 2005.

19. Animal production food safety

The Terrestrial Code Commission examined the report of the April 2004 meeting of the Working Group on Animal Production Food Safety and decided to circulate it for Member Countries’ comment (Appendix XXVII). The Terrestrial Code Commission will provide its comments on the report for the upcoming meeting of the Working Group in March 2005.

20. Future work programme

The Terrestrial Code Commission noted that the Bureau of the Terrestrial Code Commission will review the Commission’s work programme in July 2005, taking into account the outcomes of the 73rd General Session, submissions received from Member Countries, and input from the Scientific Commission and the Biological Standards Commission.

Items already scheduled for consideration include the development of a revised chapter on paratuberculosis, and the updating of chapters on dourine and surra. It also noted the need to address some points raised in the report of the OIE delegation to China for the Beijing Olympics.
21. **Small hive beetle of honey bees** (*Aethina tumida*) (Section 2.9.)

As a result of the recommendation of the *ad hoc* Group on bee diseases in 2003, the Terrestrial Code Commission decided that it would request a New Zealand expert to draft a supporting document and chapter on the small hive beetle of honey bees. The Terrestrial Code Commission also noted that the EU was producing a proposed new chapter (with a supporting document).

22. **Rinderpest / Peste des petits ruminants**

The Terrestrial Code Commission is awaiting information from the Scientific Commission on the use of vaccines for these diseases.

C. REPORTS OF AD HOC GROUPS

The following reports are for the information of Member Countries:

- *Ad hoc* Groups on the BSE chapter and on surveillance for BSE (*Appendix XXIV*)
- *Ad hoc* Group on avian influenza (*Appendix XXV*)
- Animal Welfare Working Group (*Appendix XXVI*)
- Animal Production Food Safety Working Group (*Appendix XXVII*)
- *Ad hoc* Group on diseases / pathogenic agent notification on a new OIE list of terrestrial animal diseases (*Appendix XXVIII*).

The list of chapters and appendices proposed for adoption is in Section A of this report.

OIE Terrestrial Animal Health Standards Commission/January 2005
Appendix I

MEETING OF THE OIE TERRESTRIAL ANIMAL HEALTH STANDARDS COMMISSION

Paris, 17-28 January 2005

List of Participants

MEMBERS OF THE TERRESTRIAL CODE COMMISSION

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr A. Thiermann</td>
<td>President</td>
<td>US Mission to the OECD 19, rue de Franqueville 75016 FRANCE</td>
<td>33-(0)1 44 15 18 69</td>
<td>a.thiermann@oie.int</td>
</tr>
<tr>
<td>Dr W-A. Valder</td>
<td>Vice President</td>
<td>National Expert, SANCO Brussels BELGIUM</td>
<td>(32-2)-2958916</td>
<td>wolf-arno.valder@cec.eu.in</td>
</tr>
<tr>
<td>Prof S.C. MacDiarmid</td>
<td>Secretary General</td>
<td>Principal Adviser, Zoonoses and Animal Health, New Zealand Food Safety Authority Wellington NEW ZEALAND</td>
<td>Tel: (64-4) 463 2648</td>
<td>stuart.macdiarmid@nzfsa.govt.nz</td>
</tr>
<tr>
<td>Dr S.K. Hargreaves</td>
<td>Principal Director of Livestock and Veterinary Services Ministry of Agriculture and Rural Development PO Box CY96 Causeway Harare ZIMBABWE</td>
<td>Tel: (263-4) 791 355/722 358</td>
<td>skhargreaves@zol.co.zw veeu@africaonline.co.zw</td>
<td></td>
</tr>
<tr>
<td>Prof. A.N. Panin</td>
<td>Director</td>
<td>The All-Russian State Centre for Quality and Standardisation of Veterinary Drugs and Feedstuff (VGNKI) Ministry of Agriculture 5, Zvenigorodskoye shosse 123022 Moscow RUSSIA</td>
<td>Tel/fax: (7-095) 253 14 91</td>
<td>vgnki-vet@mtu-net.ru</td>
</tr>
<tr>
<td>Prof. A.M. Hassan</td>
<td>Undersecretary</td>
<td>Ministry of Animal Resources PO Box 293 Khartoum SUDAN</td>
<td>Tel: (249)183 465218 / 464 984 / 476 958</td>
<td>Fax: (249) 183 475996 E-mail: pagesud@yahoo.com ahmedhassan32@hotmail.com</td>
</tr>
</tbody>
</table>

OTHER PARTICIPANTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. M. Thibier</td>
<td>Directeur général</td>
<td>Direction générale de l’enseignement et de la recherche Ministère de l’agriculture, l’alimentation, de la pêche et des affaires rurales 75700 Paris FRANCE</td>
<td>Tel: 01-49-55-42-40</td>
<td>michel.thibier@agriculture.gouv.fr</td>
</tr>
</tbody>
</table>

OIE HEADQUARTERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr B. Vallat</td>
<td>Director General</td>
<td>12, rue de Prony 75017 Paris FRANCE</td>
<td>33 (0)1 44 15 18 88</td>
<td>oie@oie.int</td>
</tr>
<tr>
<td>Dr A. Petrini</td>
<td>Chargé de mission</td>
<td>International Trade Department</td>
<td>33 (0)1 44 15 18 89</td>
<td>a.petrini@oie.int</td>
</tr>
<tr>
<td>Dr D. Wilson</td>
<td>Head</td>
<td>International Trade Department</td>
<td>33 (0)1 44 15 18 80</td>
<td>d.wilson@oie.int</td>
</tr>
<tr>
<td>Dr F. Berlingieri</td>
<td>Project Officer</td>
<td>International Trade Department</td>
<td>33 (0)1 44 15 18 90</td>
<td>f.berlingieri@oie.int</td>
</tr>
<tr>
<td>Dr Tomoko Ishibashi</td>
<td>Chargée de mission</td>
<td>International Trade Department</td>
<td>33 (0)1 44 15 18 92</td>
<td>t.ishibashi@oie.int</td>
</tr>
<tr>
<td>Dr K. Ben Jebara</td>
<td>Head</td>
<td>Animal Health Information Department</td>
<td>33 (0)1 44 15 18 52</td>
<td>k.benjebara@oie.int</td>
</tr>
<tr>
<td>Dr J. Pinto</td>
<td>Deputy-Head</td>
<td>Animal Health Information Department</td>
<td>33 (0)1 44 15 18 72</td>
<td>j.pinto@oie.int</td>
</tr>
</tbody>
</table>
MEETING OF THE OIE TERRESTRIAL ANIMAL HEALTH STANDARDS COMMISSION

Paris, 17-28 January 2005

Agenda

PART ONE: Matters concerning the OIE Terrestrial Animal Health Standards Commission

Item 1 General definitions (Chapter 1.1.1.)
Item 2 Evaluation of Veterinary Services (Chapter 1.3.3.)
Item 3 Zoning and compartmentalisation (Chapter 1.3.5.)
Item 4 General guidelines for animal health surveillance (Appendix 3.8.1.)
Item 5 Animal disease notification (Chapter 1.1.2.) and Criteria for listing diseases (Chapter 2.1.1.)
Item 6 Foot and mouth disease (Chapter 2.2.10. and Appendix 3.8.7.)
Item 7 Bluetongue (Chapter 2.2.13.)
Item 8 Bovine tuberculosis (Chapter 2.3.3.)
Item 9 Bovine spongiform encephalopathy (Chapter 2.3.13. and Appendix 3.8.4.)
Item 10 Transmissible spongiform encephalopathy agents inactivation procedures (Appendix 3.6.3.)
Item 11 Classical swine fever (Chapter 2.6.7.)
Item 12 Highly pathogenic avian influenza (Chapter 2.7.12.)
Item 13 Semen and embryo matters (Sections 3.2. and 3.3.)
Item 14 Rift Valley fever (Chapter 2.2.14.)
Item 15 Antimicrobial resistance (Section 3.9.)
Item 16 Carcass disposal
Item 17 Animal welfare
Item 18 Animal identification and traceability
Item 19 Animal production food safety
Item 20 Future work programme
Item 21 Small hive beetle of honey bees
Item 22 Rinderpest / Peste des petits ruminants
Item 23 Others
PART TWO: Matters discussed with the Scientific Commission for Animal Diseases

General definitions
Zoning and compartmentalisation
General guidelines for animal health surveillance
Foot and mouth disease
Bluetongue
Bovine tuberculosis
Classical swine fever
Highly pathogenic avian influenza
Antimicrobial resistance
Carcass disposal
Rinderpest / Peste des petits ruminants
Appendix III

CHAPTER 1.1.1.
GENERAL DEFINITIONS

Buffer zone
A zone established within, and along the border of, to protect the health status of animals in a free country or free zone, from those in a country or zone of a different animal health status, using measures based on the epidemiology of the disease under consideration to prevent spread of the causative pathogenic agent into a free country or free zone. These measures may include, but are not limited to, vaccination, movement control and an intensified degree of disease surveillance.

Vaccinated animals must be recognisable by a specific permanent mark. The vaccines used must meet standards defined in the *Terrestrial Manual*.

The buffer zone should have an intensified degree of disease surveillance and control.

Surveillance zone
means a zone established within, and along the border of, a free zone separating the free zone from an infected zone.

The surveillance zone should have an intensified degree of surveillance.

Competent Authority
The Veterinary Services, or other Authority of a Member Country, having the responsibility and competence for ensuring or supervising the implementation of the animal health measures or other standards in the *Terrestrial Code*.

Notification
The procedure by which:

a) the Veterinary Administration informs the Central Bureau,

b) the Central Bureau informs Veterinary Administrations,

of the suspicion or confirmation occurrence of an outbreak of disease or infection, according to the provisions of Chapter 1.1.3. of the *Terrestrial Code*.

Official control programme
A programme which is approved, and managed or supervised by the Veterinary Administration of a country for the purpose of controlling a vector, pathogen or disease by specific measures applied throughout that country, or within a zone or compartment or zones of that country.

Case
An individual animal infected by a pathogenic agent listed by the OIE, with or without clinical signs.

Emerging disease
A new infection resulting from the evolution or change of an existing pathogenic agent, a known infection spreading to a new geographic area or population, or a previously unrecognized pathogenic agent or disease diagnosed for the first time and which has a significant impact on animal or public health.
Appendix III (contd)

Epidemiological unit

A group of animals with a defined epidemiological relationship that share approximately the same likelihood of exposure to a pathogen. This may be because they share a common environment (e.g. animals in a pen), or because of common management practices. Usually, this is a herd or a flock. However, an epidemiological unit may also refer to groups such as animals belonging to residents of a village, or animals sharing a communal dipping tank system. The epidemiological relationship may differ from disease to disease, or even strain to strain of the pathogen.

Notifiable disease

A disease listed by the *Veterinary Administration*, and that, as soon as detected or suspected, must be brought to the attention of the *Veterinary Authority*, in accordance with national regulations.

Outbreak of disease or infection

The occurrence of one or more cases of the disease or an infection listed by the OIE in an epidemiological unit, breeding establishment or premises, including all buildings and all adjoining premises, where animals are present.

Where it cannot be defined in this way, the outbreak shall be considered as occurring in the part of the territory in which, taking local conditions into account, it cannot be guaranteed that both susceptible and non-susceptible animals have had no direct contact with affected or suspected cases in that area.

For example, in the case of certain parts of Africa, an outbreak means the occurrence of the disease within a sixteenth square degree; the occurrence is still referred to as an outbreak even though the disease may occur in several places within the same sixteenth square degree.

Antimicrobial agent

A naturally occurring, semi-synthetic or synthetic substance that exhibits antimicrobial activity (kill or inhibit the growth of micro-organisms). Anthelmintics and substances classed as disinfectants or antiseptics are excluded from this definition.
CHAPTER 1.3.5.

ZONING, REGIONALISATION AND COMPARTMENTALISATION

Article 1.3.5.1.

Introduction

For the purposes of the Terrestrial Code, ‘zoning’ and ‘regionalisation’ have the same meaning.

Given the difficulty of establishing and maintaining a disease free status for an entire country, especially for diseases the entry of which is difficult to control through measures at national boundaries, there may be benefits to Member Countries in establishing and maintaining a subpopulation with a different animal health status within national boundaries. Subpopulations may be separated by natural or artificial geographical barriers, or in certain animal industries, by the application of appropriate management systems.

Zoning and compartmentalisation are procedures implemented by a country under the provisions of this Chapter with a view to defining subpopulations of different animal health status within its territory for the purpose of disease control and/or international trade, and in accordance with the recommendations stipulated in the relevant Chapters in the Terrestrial Code. Compartmentalisation applies to a subpopulation when management criteria systems related to biosecurity are applied, while zoning applies when a subpopulation is defined on a geographical basis.

This chapter is to assist OIE Member Countries to establish and maintain different subpopulations within their national boundaries using the procedures of compartmentalisation and zoning. It also outlines a process for trading partners to follow in achieving recognition of such subpopulation. These procedures are best implemented by trading partners through establishing parameters and gaining agreement on the necessary measures prior to disease outbreaks.

Separate requirements will be developed for each disease for which the application of zoning or compartmentalisation is considered appropriate.

Article 1.3.5.2.

General considerations

Before trade in animals or their products may occur, an importing country needs to be satisfied that its animal health status will be appropriately protected. In most cases, the import regulations developed will rely in part on judgements made about the effectiveness of sanitary procedures undertaken by the exporting country, both at its boundaries and within its territory.

The benefits of zoning and compartmentalisation may include a contribution to disease control or eradication within Member Countries, and to the safety of international trade. Zoning may encourage the more efficient use of resources within certain parts of a country to allow trade in certain commodities from that zone in accordance with the Terrestrial Code. Compartmentalisation may allow safe trade due to the functional separation of a subpopulation from other domestic or wild animals through biosecurity measures, which a zone (through geographical separation alone) would not achieve. Following a disease outbreak, compartmentalisation may be able to take advantage of epidemiological linkages despite diverse geographical locations, to facilitate disease control.
Appendix IV (contd)

An exporting country which is establishing a zone or compartment within its territory for international trade purposes should clearly define the subpopulation in accordance with the measures stipulated in the relevant Chapters in the Terrestrial Code and should be able to explain to an importing country the basis for its claim of a distinct animal health status for the zone or compartment in such terms. Animals and herds belonging to a subpopulation need to be clearly recognizable as such. The Veterinary Administration should document in detail the measures taken to ensure the identification of the animals and herds belonging to a subpopulation, and the recognition and maintenance of its health status.

The requirements necessary to preserve procedures used to establish and maintain the distinct health status of a zone or compartment should be appropriate to the particular circumstances, and will depend on the epidemiology of the disease, environmental factors, applicable biosecurity measures, (including movement controls, use of natural and artificial boundaries, and measures, commercial management and husbandry practices), and surveillance and monitoring. The exporting country should be able to demonstrate, through detailed documentation published through official channels, that it has implemented the measures stipulated in the Terrestrial Code for establishing and maintaining such a zone or compartment.

The extent of a zone and its limits should be established by the Veterinary Administration on the basis of natural, artificial or legal boundaries, and made public through official channels. The requirements regarding a compartment should be established by the Veterinary Administration on the basis of relevant criteria such as management and husbandry practices, and made public through official channels.

Thus defined, the zones and compartments constitute the relevant subpopulations for the application of the recommendations in Part 2 of the Terrestrial Code.

Article 1.3.5.3.

Prerequisite considerations in defining a zone or compartment

When an exporting country has defined a zone or compartment within its territory in respect of one or more of the diseases covered by the Terrestrial Code, it needs to implement the measures stipulated in the Terrestrial Code for establishing and maintaining such a zone or compartment.

An importing country should recognize the existence of this zone or compartment and accept the application of the appropriate measures recommended in the Terrestrial Code corresponding to the animal health status of the zone or compartment with regard to the importation, or transit through its territory, of commodities from the zone or compartment.

Article 1.3.5.3.

Principles for defining a zone or compartment

In conjunction with the above considerations, defining a zone or compartment should be based on the application of the following principles:
1) The extent of a zone and its limits should be established by the Veterinary Administration on the basis of natural, artificial or legal boundaries, and made public through official channels.

2) The requirements regarding a compartment should be established by the Veterinary Administration on the basis of relevant criteria such as biosecurity management and husbandry practices, and made public through official channels.

3) Animals and herds belonging to subpopulations need to be clearly recognizable as such. The Veterinary Administration must document in detail the measures taken to ensure the identification of the subpopulation and the recognition and maintenance of its health status.

4) The requirements necessary to preserve the distinct health status of a zone or compartment must be appropriate to the particular disease and will depend on the epidemiology of the disease, environmental factors, control measures and surveillance.

5) Thus defined, the zones and compartments constitute the relevant subpopulations for the application of the recommendations in Part 2 of the Terrestrial Code.

Article 1.3.5.5.

Sequence of steps to be taken in defining a zone compartment

There is no single sequence of steps which must be followed in defining a zone or a compartment. The steps that trading partners choose will generally depend on the circumstances existing within a country and at its borders. The recommended steps are:

1) For zoning:
 a) the exporting country identifies a geographical area within its territory which it considers to contain an animal subpopulation with a distinct health status with respect to a specific disease/specific diseases, based on surveillance and monitoring;
 b) the exporting country identifies the procedures which are being, or could be, employed to distinguish such an area epidemiologically from other parts of its territory, in accordance with the measures stipulated in the Terrestrial Code.
 c) the exporting country provides the information above to the importing country, and explains that the area can be treated as an epidemiologically separated zone for international trade purposes;
 d) the importing country determines whether it may accept such an area as a zone for the importation of animals and animal products, taking into account:
 i) an evaluation of the exporting country's Veterinary Services;
 ii) the result of a risk assessment based on the information provided by the exporting country and its own research;
 iii) its own animal health situation with respect to the disease(s) concerned; and
 iv) other relevant OIE standards;
Appendix IV (contd)

c) the importing country notifies the exporting country of the result of its determination and the underlying reasons, within a reasonable period of time, being either:

i) recognition of the zone;

ii) request for further information; or

iii) rejection of the area as a zone for international trade purposes;

d) an attempt should be made to resolve any differences of opinion over the definition of the zone, either in the interim or finally, by using an agreed mechanism to reach consensus (such as the OIE dispute settlement mechanism);

e) the importing country and the exporting country may enter into a formal agreement defining the zone.

2) For compartmentalisation:

a) based on discussions with the relevant enterprise/industry, the exporting country identifies within its territory one or more establishments or other premises owned by an enterprise(s) which operates under a common biosecurity management system, and which it considers contains an animal subpopulation with a distinct health status with respect to a specific disease(s);

b) the exporting country jointly examines the 'biosecurity management manual' produced by the enterprise/industry for such establishment(s), and confirms through an audit that:

i) such establishment(s) is(are) epidemiologically closed throughout its routine operating procedures as a result of effective implementation of its 'biosecurity management manual' and;

ii) the surveillance and monitoring programme in place is appropriate to verify the free status of such establishment(s) with respect to such disease(s);

c) the exporting country identifies such an enterprise to be a free compartment, in accordance with the measures stipulated in the Terrestrial Code;

d) the exporting country provides the information above to the importing country, and explains that such an enterprise can be treated as an epidemiologically separated compartment for international trade purposes;

e) the importing country determines whether it may accept such an enterprise as a compartment taking into account:

i) an evaluation of the exporting country’s Veterinary Services;

ii) the result of a risk assessment based on the information provided by the exporting country and its own research;

iii) its own animal health situation with respect to the disease(s) concerned; and

iv) other relevant OIE standards;
f) the importing country notifies the exporting country of the result of its examination and the underlying reasons, within a reasonable period of time, being either:
 i) recognition of the compartment;
 ii) request for further information; or
 iii) rejection of such an enterprise as a compartment for international trade purposes;

g) an attempt should be made to resolve any differences of opinion over the definition of the compartment, either in the interim or finally, by using an agreed mechanism to reach consensus (such as the OIE dispute settlement mechanism);

h) the importing country and the exporting country may enter into a formal agreement defining the compartment.
APPENDIX 3.8.1. CHAPTER 1.3.6

GENERAL GUIDELINES FOR ANIMAL HEALTH SURVEILLANCE

Article 3.8.1.1.

Introduction and objectives

1) In general, surveillance is aimed at demonstrating the absence of disease or infection, determining the occurrence or distribution of disease or infection, while also detecting as early as possible exotic or emerging diseases. The type of surveillance applied depends on the desired outputs needed to support decision-making. The following guidelines may be applied to all diseases, their agents and susceptible species as listed in the Terrestrial Code, and are designed to assist with the development of surveillance methodologies. Except where a specific surveillance method for a certain disease or infection is already described in the Terrestrial Code, the guidelines in this Appendix may be used to further refine the general approaches described for a specific disease or infection. Where detailed disease/infection-specific information is not available, suitable approaches should be based on the guidelines in this Appendix.

2) Animal health surveillance is an essential component necessary to detect diseases, to monitor disease trends, to control endemic and exotic diseases, to support claims for freedom from disease or infection, to provide data to support the risk analysis process, for both animal health and/or public health purposes, and to substantiate the rationale for sanitary measures. Surveillance data underpin the quality of disease status reports and should satisfy information requirements for accurate risk analysis both for international trade as well as for internal national decision-making.

3) Essential prerequisites to enable a Member Country to provide information for the evaluation of its animal health status are:
 a) that the particular Member Country complies with the provisions of Chapter 1.3.3. of the Terrestrial Code on the quality and evaluation of the Veterinary Services;
 b) that, where possible, surveillance data be complemented by other sources of information (e.g. scientific publications, research data, documented field observations and other non-survey data);
 c) that transparency in the planning and execution of surveillance activities and the analysis and availability of data and information, be maintained at all times, in accordance with Chapter 1.1.2. of the Terrestrial Code.

4) The objectives of this Appendix are to:
 a) provide guidance to the type of outputs that a surveillance system should generate;
 b) provide guidelines to assess the quality of disease surveillance systems.

Article 3.8.1.2.

Definitions

The following definitions apply for the purposes of this Appendix:

Bias: A tendency of an estimate to deviate in one direction from a true value. (as by reason of nonrandom sampling)

Case definition: A case definition is a set of criteria used to classify an animal or epidemiological unit as a case or non-case.
Confidence: In the context of demonstrating freedom from infection, confidence is the probability that the type of surveillance applied would detect the presence of infection if the population were infected. The confidence depends on, among others the design prevalence, or other parameters, the assumed level of infection in an infected population. Confidence therefore refers to our confidence in the ability of the surveillance applied to detect disease, and is equivalent to the sensitivity of the surveillance system.

Early detection system: A system for the timely detection and identification of an incursion or emergence of disease/infection in a country, zone or compartment. An early detection system should be under the control of the Veterinary Services and should include the following characteristics:

a) representative coverage of target animal populations by field services;

b) ability to undertake effective disease investigation and reporting;

c) access to laboratories capable of diagnosing and differentiating relevant diseases;

d) a training programme for veterinarians, veterinary para-professionals and others involved in handling animals for detecting and reporting unusual animal health incidents;

e) the legal obligation of private veterinarians in relation to the Veterinary Administration;

f) timely reporting system of the event to the Veterinary Services.

g) a national chain of command.

Epidemiological unit: A group of animals with a defined epidemiological relationship that share approximately the same likelihood of exposure to a pathogen. This may be because they share a common environment (e.g. animals in a pen), or because of common management practices. Usually, this is a herd or flock; however, an epidemiological unit may also refer to groups such as the animals belonging to residents of a village, or animals sharing a communal dipping tank system.

Outbreak definition: An outbreak definition is a set of criteria used to classify the occurrence of one or more cases in a group of animals or units as an outbreak.

Probability sampling: A sampling strategy in which every unit has a known non-zero probability of inclusion in the sample.

Sample: The group of elements (sampling units) drawn from a population, on which tests are performed or parameters measured to provide surveillance information.

Sampling units: The unit that is sampled, either in a random survey or in non-random surveillance. This may be an individual animal or a group of animals (e.g. an epidemiological unit). Together, they comprise the sampling frame.

Sensitivity: The proportion of truly positive units that are correctly identified as positive by a test.

Specificity: The proportion of truly negative units that are correctly identified as negative by a test.

Study population: The population from which surveillance data are derived. This may be the same as the target population or a subset of it.

Surveillance: The systematic ongoing collection, collation, and analysis of data, and the timely dissemination of information to those who need to know so that action can be taken.
Surveillance system: A method of surveillance that may involve one or more component activities that generates information on the animal health, disease or zoonosis status of animal populations.

Survey: An investigation in which information is systematically collected, usually carried out on a sample of a defined population group, within a defined time period.

Target population: The population about which conclusions are to be inferred drawn from a study.

Test: A procedure used to classify a unit as either positive, negative or suspect with respect to an infection or disease.

Test system: A combination of multiple tests and rules of interpretation which are used for the same purpose as a test.

Unit: An individually identifiable element. This is a generic concept used to describe, for example, the members of a population, or the elements selected when sampling. In these contexts, examples of units include individual animals, pens, farms, holdings, villages, districts etc.

Principles of surveillance

1) Types of surveillance
 a) Surveillance may be based on many different data sources and can be classified in a number of ways, including:
 i) the means by which data are collected (active versus passive surveillance);
 ii) the disease focus (pathogen-specific versus general surveillance); and
 iii) the way in which units for observation are selected (structured surveys versus non-random data sources).
 b) In this Appendix, surveillance activities are classified as being based either on:
 i) structured population-based surveys, such as:
 – systematic random sampling at slaughter;
 – random surveys; or
 ii) structured non-random surveillance activities, such as:
 – disease reporting or notifications;
 – control programmes/health schemes;
 – targeted testing/screening;
 – ante-mortem and post-mortem inspections;
 – laboratory investigation records;
 – biological specimen banks;
 – sentinel units;
 – field observations;
 – farm production records.
Appendix V (contd)

c) In addition, surveillance data should be supported by related information, such as:
 i) data on the epidemiology of the infection, including environmental, host population distribution, and climatic information;
 ii) data on animal movements and trading patterns for animals and animal products;
 iii) national animal health regulations, including information on compliance with them and their effectiveness;
 iv) history of imports of potentially infected material; and
 v) biosecurity measures in place.

d) The sources of evidence should be fully described. In the case of a structured survey, this should include a description of the sampling strategy used for the selection of units for testing. For structured non-random data sources, a full description of the system is required including the source(s) of the data, when the data were collected, and a consideration of any biases that may be inherent in the system.

2) Critical elements

In assessing the quality of a surveillance system, the following critical elements need to be addressed over and above quality of Veterinary Services (Chapter 1.3.3).

a) Populations

 Ideally, surveillance should be carried out in such a way as to take into account all animal species susceptible to the infection in a country, zone or compartment. The surveillance activity may cover all individuals in the population or part of them. When surveillance is conducted only on a subpopulation in the latter case, care should be taken regarding the inferences made from the results.

 Definitions of appropriate populations should be based on the specific recommendations of the disease chapters of the Terrestrial Code.

TO PROPOSE FOR INSERTION IN CHAPTER 1.1.1

- **Carriers**—animals that harbour the agent and may spread it directly or indirectly while not demonstrating clinical signs of the disease. Depending on the disease, an animal may serve as a carrier animal for shorter or longer periods of time. The length of time that an infection can be spread by inapparent carriers is important in designing a surveillance scheme.

- **Reservoirs**—some pathogens require either a living organism or inanimate environment for multiplication. Recognition of the location and role of a reservoir in the persistence of an infectious agent should be considered.

- **Vectors**—a pathogen can be vector borne. Where this is the case, the biology and ecology (including seasonal effects) of vector populations should be considered.

- **Immune status**—age of an animal, previous exposure to a specific pathogen, and use of vaccination are factors that need to be considered in determining appropriate diagnostic tests or clinical measures for evidence of infection.

- **Genetic resistance**—some animals may not be susceptible to specific disease agents because of genetic resistance. If this is true for an infectious agent under surveillance, a method for identifying those animals that are susceptible or resistant may need to be factored into the design for surveillance.

- **Age, sex, and other host criteria**—some pathogens can only affect animals that possess certain host related criteria. These type of criteria should be accounted for in the definition of the target population, surveillance design and interpretation of the results.
b) Epidemiological unit

The relevant epidemiological unit for the surveillance system should be defined and documented to ensure that it is representative of the population. Therefore, it should be chosen taking into account factors such as carriers, reservoirs, vectors, immune status, genetic resistance and age, sex, and other host criteria.

c) Clustering

Infection in a country, zone or compartment usually clusters rather than being uniformly or randomly distributed through a population. Clustering may occur at a number of different levels (e.g. a cluster of infected animals within a herd, a cluster of pens in a building, or a cluster of farms in a compartment). Clustering should be taken into account in the design of surveillance activities and the statistical analysis of surveillance data, at least at what is judged to be the most significant level of clustering for the particular animal population and infection.

d) Case and outbreak definitions

Clear and unambiguous case and outbreak definitions should be developed and documented for each pathogen under surveillance, using, where they exist, the standards in the Terrestrial Code.

e) Analytical methodologies

Surveillance data should be analysed using appropriate methodologies, and at the appropriate organisational levels to facilitate effective decision making, whether it be planning interventions or demonstrating status.

Methodologies for the analysis of surveillance data should be flexible to deal with the complexity of real life situations. No single method is applicable in all cases. Different methodologies may be needed to accommodate the relevant pathogens, varying production and surveillance systems, and types and amounts of data and information available.

The methodology used should be based on the best available information that is in accord with current scientific thinking. The methodology should be in accordance with this Appendix and fully documented, and supported by reference to the OIE Standards, to the scientific literature and other sources, including expert opinion. Sophisticated mathematical or statistical analyses should only be carried out when justified by the proper amount and quality of field data.

Consistency in the application of different methodologies should be encouraged and transparency is essential in order to ensure fairness and rationality, consistency in decision making and ease of understanding. The uncertainties, assumptions made, and the effect of these on the final conclusions should be documented.

f) Testing

Surveillance involves the detection of disease or infection by the use of appropriate case definitions based on the results of one or more tests for evidence of infection or immune status. In this context, a test may range from detailed laboratory examinations to field observations and the analysis of production records. The performance of a test at the population level (including field observations) may be described in terms of its sensitivity and specificity. Imperfect sensitivity and/or specificity will have an impact on the conclusions from surveillance. Therefore, predictive values of the test should, whenever possible, be taken into account in the design of surveillance systems and analysis of surveillance data.
Appendix V (contd)

The values of sensitivity and specificity for the tests used should be specified, and the method used to determine or estimate these values should be documented. Alternatively, where values for sensitivity and/or specificity for a particular test are specified in the Terrestrial Manual, these values may be used as a guide without justification.

Samples from a number of animals or units may be pooled together and subjected to a single test. The results should be interpreted using sensitivity and specificity values that have been determined or estimated for that particular pool size and testing procedure.

g) Quality assurance

Surveillance systems should incorporate the principles of quality assurance and be subjected to periodic auditing to ensure that all components of the system function and provide verifiable documentation of procedures and basic checks to detect significant deviations of procedures from those documented in the design.

h) Validation

Results from animal health surveillance systems are subject to one or more potential biases. When assessing the results, care should be taken to identify potential biases that can inadvertently lead to an over-estimate or an under-estimate of the parameters of interest.

i) Data collection and management

The success of a surveillance system is dependent on a reliable process for data collection and management. The process may be based on paper records or computerised. Even where data are collected for non-survey purposes (e.g. during disease control interventions, inspections for movement control or during disease eradication schemes), the consistency and quality of data collection and event reporting in a format that facilitates analysis, is critical. Factors influencing the quality of collected data include:

- the distribution of, and communication between, those involved in generating and transferring data from the field to a centralised location;
- the ability of the data processing system to detect missing, inconsistent or inaccurate data, and to address these problems;
- maintenance of disaggregated data rather than the compilation of summary data;
- minimisation of transcription errors during data processing and communication.

Article 3.8.1.4.

Structured population-based surveys

In addition to the principles for surveillance discussed above, the following guidelines should be used when planning, implementing and analysing surveys.

1) Types of surveys

Surveys may be conducted on the entire target population (i.e. a census) or on a sample. A sample may be selected in either of the two following manners:

a) non-probability based sampling methods, such as:
 i) convenience;
 ii) expert choice;
 iii) quota;
b) probability based sampling methods, such as:
 i) simple random selection;
 ii) cluster sampling;
 iii) stratified sampling.

Non-probability based sampling methods will not be discussed further.

2) Systematic selection

Periodic or repeated surveys conducted in order to document disease freedom should be done using probability based sampling methods so that data from the study population can be extrapolated to the target population in a statistically valid manner.

The sources of information should be fully described and should include a detailed description of the sampling strategy used for the selection of units for testing. Also, consideration should be made of any biases that may be inherent in the survey design.

3) Survey design

The population of epidemiological units should first be clearly defined; hereafter sampling units appropriate for each stage, depending on the design of the survey, should be defined.

The design of the survey will depend on the size and structure of the population being studied, the epidemiology of the infection and the resources available.

4) Sampling

The objective of sampling from a population is to select a subset of units from the population that is representative of the population with respect to the object of the study such as the presence or absence of infection. Sampling should be carried out in such a way as to provide the best likelihood that the sample will be representative of the population, within the practical constraints imposed by different environments and production systems. In order to detect the presence of an infection in a population of unknown disease status targeted sampling methods that optimise the detection of infection can be used. In such cases, care should be taken regarding the inferences made from the results.

5) Sampling methods

When selecting epidemiological units from within a population, a formal probability sampling method (e.g. simple random sampling) should be used. When this is not possible, sampling should provide the best practical chance of generating a sample that is representative of the target population.

In any case, the sampling method used at all stages should be fully documented and justified.

6) Sample size

In general, surveys are conducted either to demonstrate the presence or absence of a factor (e.g. infection) or to estimate a parameter (e.g. the prevalence of infection). The method used to calculate sample size for surveys depends on the purpose of the survey, the expected prevalence, the level of confidence desired of the survey results and the performance of the tests used.
Appendix V (contd)

Article 3.8.1.5.

Structured non-random surveillance

Surveillance systems routinely use structured non-random data, either alone or in combination with surveys. There is a wide variety of non-random data sources that can be used.

1. Common non-random surveillance sources

A wide variety of non-random surveillance sources may be available. These vary in their primary purpose and the type of surveillance information they are able to provide. Some surveillance systems are primarily established as early detection systems, but may also provide valuable information to demonstrate freedom from infection. Other systems provide cross-sectional information suitable for prevalence estimation, either once or repeatedly, while yet others provide continuous information, suitable for the estimate of incidence data (e.g. disease reporting systems, sentinel sites, testing schemes). Surveillance systems routinely use structured non-random data, either alone or in combination with surveys.

a) Disease reporting or notification systems

Data derived from disease reporting systems can be used in combination with other data sources to substantiate claims of animal health status, to generate data for risk analysis, or for early detection. Effective laboratory support is an important component of any reporting system. Reporting systems relying on laboratory confirmation of suspect clinical cases should use tests that have a good high specificity. Reports should be released by the laboratory in a timely manner, with the amount of time from disease detection to report generation minimized (to hours in the case of introduction of a foreign animal disease).

b) Control programmes / health schemes

Animal disease control programmes or health schemes, while focusing on the control or eradication of specific diseases, should be planned and structured in such a manner as to generate data that are scientifically verifiable and contribute to structured surveillance.

c) Targeted testing / screening

This may involve testing targeted to selected sections of the population (subpopulations), in which disease is more likely to be introduced or found. Examples include testing culled and dead animals, swill fed animals, those exhibiting clinical signs, animals located in a defined geographic area and specific age or commodity group.

d) Ante-mortem and post-mortem inspections

Inspections of animals at abattoirs may provide valuable surveillance data. The sensitivity and specificity of the particular slaughterhouse inspection system for detecting the presence of infectious agents of surveillance interest under the particular inspection arrangements applying in a country should be pre-determined by the Competent Authority if the data is to be fully utilised. The accuracy of the inspection system will be influenced by:

i) the level of training and experience of the staff doing the inspections, and the ratio of staff of different levels of training;

ii) the involvement of the Competent Authorities in the supervision of ante-mortem and post-mortem inspections;

iii) the quality of construction of the abattoir, speed of the slaughter chain, lighting quality, etc; and
iv) staff morale/motivation for accurate and efficient performance.

Abattoir inspections are likely to provide good coverage only for particular age groups and geographical areas. Statistical biases are likely to be more frequent for infected animals originating from larger, better managed farms rather than for animals originating from smallholder or backyard production farms, as well as for healthy rather than diseased animals. Abattoir surveillance data are subject to obvious biases in relation to target and study populations (e.g. only animals of a particular class and age may be slaughtered for human consumption in significant numbers). Such biases need to be recognized when analysing surveillance data.

Both for traceback in the event of detection of disease and for analysis of spatial and herd-level coverage, there should be, if possible, an effective identification system that relates each animal in the abattoir to its property/locality of origin.

e) Laboratory investigation records

Analysis of laboratory investigation records may provide useful surveillance information. The coverage of the system will be increased if analysis is able to incorporate records from national, accredited, university and private sector laboratories. Valid analysis of data from different laboratories depends on the existence of standardised diagnostic procedures and standardised methods for interpretation and data recording. As with abattoir inspections, there needs to be a mechanism to relate specimens to the farm of origin.

f) Biological specimen banks

Specimen banks consist of stored specimens, gathered either through representative sampling or opportunistic collection or both. Specimen banks may contribute to retrospective studies, including providing support for claims of historical freedom from infection, and may allow certain studies to be conducted more quickly and at lower cost than alternative approaches.

g) Sentinel units

Sentinel units/sites involve the identification and regular testing of one or more of animals of known health/immune status in a specified geographical location to detect the occurrence of disease (usually serologically). They are particularly useful for surveillance of diseases with a strong spatial component, such as vector-borne diseases. Sentinel units provide the opportunity to target surveillance depending on the likelihood of infection (related to vector habitats and host population distribution), cost and other practical constraints. Sentinel units may provide evidence of freedom from infection, or provide data on prevalence and incidence as well as the distribution of disease.

h) Field observations

Clinical observations of animals in the field are an important source of surveillance data. The sensitivity and specificity of field observations may be relatively low, but these can be more easily determined and controlled if a clear, unambiguous and easy to apply standardised case definition is applied. Education of potential field observers in application of the case definition and reporting is an important component. Ideally, both the number of positive observations and the total number of observations should be recorded.

i) Farm production records

Systematic analysis of farm production records may be used as an indicator of the presence or absence of disease at the herd or flock level. In general, the sensitivity of this approach may be quite high (depending on the disease), but the specificity is often quite low.
Appendix V (contd)

2) Critical elements for structured non-random surveillance

There is a number of critical factors which should be taken into account when using structured non-random surveillance data such as coverage of the population, duplication of data, and sensitivity and specificity of tests that may give rise to difficulties in the interpretation of data. Surveillance data from non-random data sources may increase the level of confidence or be able to detect a lower level of prevalence with the same level of confidence compared to structured surveys.

3) Analytical methodologies

Different methodologies may be used for the analysis of non-random surveillance data.

Different scientifically valid methodologies may be used for the analysis of non-random surveillance data. Where no data are available, estimates based on expert opinions, gathered and combined using a formal, documented and scientifically valid methodology may be used.

Analytical methodologies based on the use of step-wise probability estimates to describe the surveillance system may determine the probability of each step either by:

a) the analysis of available data, using a scientifically valid methodology; or where no data are available,

b) the use of estimates based on expert opinion, gathered and combined using a formal, documented and scientifically valid methodology.

4) Combination of multiple sources of data

The methodology used to combine the evidence from multiple data sources should be scientifically valid, and fully documented including references to published material.

Surveillance information gathered from the same country, zone or compartment at different times may provide cumulative evidence of animal health status. Such evidence gathered over time may be combined to provide an overall level of confidence. For instance, repeated annual surveys may be analysed to provide a cumulative level of confidence. However, a single larger survey, or the combination of data collected during the same time period from multiple random or non-random sources, may be able to achieve the same level of confidence in just one year.

Analysis of surveillance information gathered intermittently or continuously over time should, where possible, incorporate the time of collection of the information to take the decreased value of older information into account. The sensitivity, specificity and completeness of data from each source should also be taken into account for the final overall confidence level estimation.

Article 3.8.1.6.

SURVEILLANCE TO DEMONSTRATE FREEDOM FROM INFECTION

Surveillance to demonstrate freedom from disease/infection International recognition of freedom from infection

1) Introduction Requirements to declare a country, zone or compartment free from disease/infection without pathogen specific surveillance

This Article provides general principles for declaring a country, zone or compartment free from disease/infection in relation to the time of last occurrence and in particular for the recognition of historical freedom.
The provisions of this Article are based on the principles described in Article 3.8.1.3. of this Appendix and the following premises:

– in the absence of disease and vaccination, the animal population would become susceptible over a period of time;

– the disease agents to which these provisions apply are likely to produce identifiable clinical signs in susceptible animals;

– competent and effective Veterinary Services will be able to investigate, diagnose and report disease, if present;

– the absence of disease/infection over a long period of time in a susceptible population can be substantiated by effective disease investigation and reporting by the Veterinary Services of a Member Country.

4.2. Additional requirements to declare a country or compartment free from infection without pathogen-specific surveillance

a) Historically free

Unless otherwise specified in the relevant disease chapter, a country, zone or compartment may be recognised free from infection without formally applying a pathogen-specific surveillance programme when:

i) there has never been occurrence of disease, or

ii) eradication has been achieved or the disease/infection has ceased to occur for at least 25 years, provided that for at least the past 10 years:

iii) it has been a notifiable disease;

iv) an early detection system has been in place;

v) measures to prevent disease/infection introduction have been in place; no vaccination against the disease has been carried out unless otherwise provided in the Terrestrial Code;

vi) infection is not known to be established in wildlife within the country or zone intended to be declared free. (A country or zone cannot apply for historical freedom if there is any evidence of infection in wildlife. However, specific surveillance in wildlife is not necessary.)

b) Last occurrence within the previous 25 years

Countries, zones or compartments that have achieved eradication (or in which the disease/infection has ceased to occur) within the previous 25 years, should follow the pathogen-specific surveillance requirements in the Terrestrial Code if they exist. In the absence of specific requirements for surveillance in the Terrestrial Code, countries should follow the general guidelines for surveillance to demonstrate animal health status outlined in this Appendix provided that for at least the past 10 years:

i) it has been a notifiable disease;

ii) an early detection system has been in place;

iii) measures to prevent disease/infection introduction have been in place;

iv) no vaccination against the disease has been carried out unless otherwise provided in the Terrestrial Code,
Appendix V (contd)

v) infection is not known to be established in wildlife within the country or zone intended to be declared free. (A country or zone cannot apply for freedom if there is any evidence of infection in wildlife. However, specific surveillance in wildlife is not necessary.)

2) Guidelines for the discontinuation of pathogen-specific screening after recognition of freedom from infection

A country, zone or compartment that has been recognised as free from infection following the provisions of the Terrestrial Code may discontinue pathogen-specific screening while maintaining the infection-free status provided that:

a) it is a notifiable disease;

b) an early detection system is in place;

c) measures to prevent disease/infection introduction are in place;

d) vaccination against the disease is not applied;

e) infection is known not to be established in wildlife. (Specific surveillance in wildlife has demonstrated the absence of infection.)

3) International recognition of disease/infection free status

For diseases for which procedures exist whereby the OIE can officially recognise the existence of a disease/infection free country, zone or compartment, a Member Country wishing to apply for recognition of this status shall, via its Permanent Delegate, send to the OIE all the relevant documentation relating to the country, zone or compartment concerned. Such documentation should be presented according to guidelines prescribed by the OIE for the appropriate animal diseases.

4) Demonstration of freedom from infection

A surveillance system to demonstrate freedom from infection should meet the following requirements in addition to the general requirements for surveillance outlined in Article 3.8.1.3. of this Appendix.

Freedom from infection implies the absence of the pathogenic agent in the country, zone or compartment. Scientific methods cannot provide absolute certainty of the absence of infection. Demonstrating freedom from infection involves providing sufficient evidence to demonstrate (to a level of confidence acceptable to Member Countries) that infection with a specified pathogen is not present in a population. In practice, it is not possible to prove (i.e., be 100% confident) that a population is free from infection (unless every member of the population is examined simultaneously with a perfect test with both sensitivity and specificity equal to 100%). Instead, the aim is to provide adequate evidence (to an acceptable level of confidence), that infection, if present, is present in less than a specified proportion of the population.

However, finding evidence of infection at any level in the target population automatically invalidates any freedom from infection claim.

Evidence from targeted, random or non-random data sources, as stated before, may increase the level of confidence or be able to detect a lower level of prevalence with the same level of confidence compared to structured surveys.
Surveillance for distribution and occurrence of infection

Surveillance to determine distribution and occurrence of infection or of other relevant health related events is widely used to assess progress in the control or eradication of selected diseases and pathogens and as an aid to decision making. It has, however, relevance for the international movement of animals and products when movement occurs among infected countries.

In contrast to surveillance to demonstrate freedom from infection, surveillance used to assess progress in control or eradication of selected diseases and pathogens is usually designed to collect data about a number of variables of animal health relevance, for example:

1) prevalence or incidence of infection;
2) morbidity and mortality rates;
3) frequency of disease/infection risk factors and their quantification when the risk factors are expressed by continuous [real numbers] or discrete [integers] variables;
4) frequency distribution of herd sizes or the sizes of other epidemiological units;
5) frequency distribution of antibody titres;
6) proportion of immunised animals after a vaccination campaign;
7) frequency distribution of the number of days elapsing between suspicion of infection and laboratory confirmation of the diagnosis and/or to the adoption of control measures;
8) farm production records, etc.

All of the listed data may also have relevance for the risk analysis.
CHAPTER 2.1.1.
CRITERIA FOR LISTING DISEASES

Article 2.1.1.1.
The criteria for the inclusion of a disease in the OIE List are as follows:

<table>
<thead>
<tr>
<th>Basic criteria</th>
<th>Parameters (at least one ‘yes’ answer means that the criterion has been met)</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Spread</td>
<td>Has international spread been proven on three or more occasions? OR</td>
</tr>
<tr>
<td></td>
<td>Are more than three countries with populations of susceptible animals free of</td>
</tr>
<tr>
<td></td>
<td>the disease or facing impending freedom (based on the Terrestrial Code</td>
</tr>
<tr>
<td></td>
<td>provisions, especially Appendix 3.8.1)? OR</td>
</tr>
<tr>
<td></td>
<td>Do OIE annual reports indicate that a significant number of countries with</td>
</tr>
<tr>
<td></td>
<td>susceptible populations have reported absence of the disease for several</td>
</tr>
<tr>
<td></td>
<td>consecutive years?</td>
</tr>
<tr>
<td>Significant Spread within Naïve Populations</td>
<td>Does the disease exhibit significant mortality at the level of a country or</td>
</tr>
<tr>
<td></td>
<td>zone/compartment? AND/OR</td>
</tr>
<tr>
<td></td>
<td>Does the disease exhibit significant morbidity at the level of a country or</td>
</tr>
<tr>
<td></td>
<td>zone/compartment?</td>
</tr>
<tr>
<td>Zoonotic Potential</td>
<td>Has transmission to humans been proven? (with the exception of artificial</td>
</tr>
<tr>
<td></td>
<td>circumstances) AND</td>
</tr>
<tr>
<td></td>
<td>Is human infection associated with severe consequences? (death or prolonged</td>
</tr>
<tr>
<td></td>
<td>illness)</td>
</tr>
<tr>
<td>Emerging Diseases</td>
<td>Is there rapid spread and/or apparent zoonotic properties?</td>
</tr>
</tbody>
</table>
Appendix VI (contd)

Article 2.1.1.2.

The criteria in Article 2.1.1. above are applied according to the decision-making model shown below:

INTERNATIONAL SPREAD
Has international spread been proven on three or more occasions? OR
Are there more than three outbreaks with populations of susceptible animals in the same host or species, occurring simultaneously? OR
Does the use of data on Code provisions, especially Article 5.3.1)? OR

EMERGING
(A newly recognized pathogen or known pathogen behaving differently)

If there is rapid spread under apparent normal properties?

ZOONOTIC
Has transmission to humans been proven? (with the exceptions of avian influenza) AND
Is human infection associated with severe consequences? (both or prolonged illness)

SIGNIFICANT SPREAD IN NAIVE POPULATIONS
Does the disease cause significant mortality at the level of a country or zone? AND/OR
Does the threat cause significant morbidity at the level of a country or zone?

NO

YES

EXCLUDE

INCLUDE

Article 2.1.1.3.

The following diseases are included in the OIE List.

1) The following diseases are included within the category of multiple species diseases:
 - Anthrax
 - Aujeszky's disease
 - Bluetongue
 - Brucellosis (Brucella abortus)**
 - Brucellosis (Brucella melitensis)**
 - Brucellosis (Brucella suis)**
 - Crimean Conga haemorrhagic fever*
 - Echinococcosis/hydatidosis
 - Foot and mouth disease
 - Heartwater

OIE Terrestrial Animal Health Standards Commission/January 2005
Appendix VI (contd)

– Japanese encephalitis***
– Leptospirosis
– Lumpy skin disease***
– New world screwworm (Cochliomyia hominivorax)
– Old world screwworm (Chrysomya bezziana)
– Paratuberculosis
– Q fever
– Rabies
– Rinderpest***
– Rift Valley fever
– Trichinellosis
– Tularemia***
– Vesicular stomatitis
– West Nile fever*.

2) The following diseases are included within the category of cattle diseases:

– Bovine anaplasmosis
– Bovine babesiosis
– Bovine brucellosis**
– Bovine cysticercosis
– Bovine genital campylobacteriosis
– Bovine spongiform encephalopathy
– Bovine viral diarrhoea*
– Bovine tuberculosis
– Contagious bovine pleuropneumonia
– Dermatophilosis
– Enzootic bovine leukosis
– Haemorrhagic septicaemia
– Infectious bovine rhinotracheitis/infectious pustular vulvovaginitis
– Lumpy skin disease***
– Malignant catarrhal fever
– Rinderpest***
– Theileriosis
– Trichomonosis
– Trypanosomosis (tsetse–transmitted).

3) The following diseases are included within the category of sheep and goat diseases:

– Caprine and ovine brucellosis (excluding B. ovis)**
– Caprine arthritis/encephalitis
– Contagious agalactia
– Contagious caprine pleuropneumonia
– Enzootic abortion of ewes (ovine chlamydiosis)
– Ovine pulmonary adenomatosis
– Nairobi sheep disease
– Maedi–visna
– Ovine epididymitis (Brucella ovis)
– Peste des petits ruminants
– Salmonellosis (S. abortusovis)
– Scrapie
– Sheep pox and goat pox.
Appendix VI (contd)

4) The following diseases are included within the category of equine diseases:

- African horse sickness
- Contagious equine metritis
- Dourine
- Epizootic lymphangitis
- Equine encephalomyelitis (Eastern and Western)**
- Equine encephalomyelitis (Eastern)**
- Equine encephalomyelitis (Western)**
- Equine infectious anaemia
- Equine influenza
- Equine piroplasmosis
- Equine rhinopneumonitis
- Equine viral arteritis
- Glanders
- Horse mange
- Horse pox
- Japanese encephalitis***
- Surra (Trypanosoma evansi)
- Venezuelan equine encephalomyelitis.

5) The following diseases are included within the category of swine diseases:

- African swine fever
- Atrophic rhinitis of swine
- Classical swine fever
- Nipah virus encephalitis*
- Porcine cysticercosis
- Porcine brucellosis**
- Porcine reproductive and respiratory syndrome
- Enterovirus encephalomyelitis
- Swine vesicular disease
- Transmissible gastroenteritis.

6) The following diseases are included within the category of avian diseases:

- Avian chlamydiosis
- Avian infectious bronchitis
- Avian infectious laryngotracheitis
- Avian mycoplasmosis (M. gallisepticum)
- Avian mycoplasmosis (M. synoviae)*
- Avian tuberculosis
- Duck virus hepatitis
- Duck virus enteritis
- Fowl cholera
- Fowl pox
- Fowl typhoid
- Highly pathogenic avian influenza
- Infectious bursal disease (Gumboro disease)
- Marek’s disease
- Newcastle disease
- Pullorum disease
- Turkey rhinotracheitis*.
Appendix VI (contd)

7) The following diseases are included within the category of lagomorph diseases:
 – Myxomatosis
 – Rabbit haemorrhagic disease
 – *Fahremin***.

8) The following diseases are included within the category of bee diseases:
 – Acarapisosis of honey bees
 – American foulbrood of honey bees
 – European foulbrood of honey bees
 – *Small hive beetle infestation (Aethina tumida)*
 – *Tropilaelaps* infestation of honey bees
 – Varroosis of honey bees.

9) The following diseases are included within the category of other diseases:
 – *Camelpox*
 – Leishmaniosis.

* Added disease
** Changed name
*** Change of species category

text deleted
CHAPTER 2.2.10

FOOT AND MOUTH DISEASE

Article 2.2.10.1.

For the purposes of the Terrestrial Code, the incubation period for foot and mouth disease (FMD) shall be 14 days.

For the purposes of this Chapter, ruminants include animals of the family of Camelidae.

For the purposes of this Chapter, a case includes an animal infected with FMD virus (FMDV).

For the purposes of international trade, this Chapter deals not only with the occurrence of clinical signs caused by FMDV, but also with the presence of infection with FMDV in the absence of clinical signs.

The following defines the occurrence of FMDV infection:

1) FMDV has been isolated and identified as such from an animal or a product derived from that animal, or

2) viral antigen or viral RNA specific to one or more of the serotypes of FMDV has been identified in samples from one or more animals showing clinical signs consistent with FMD, or epidemiologically linked to a confirmed or suspected outbreak of FMD, or giving cause for suspicion of previous association or contact with FMDV, or

3) antibodies to structural or nonstructural proteins of FMDV that are not a consequence of vaccination, have been identified in one or more animals showing clinical signs consistent with FMD, or epidemiologically linked to a confirmed or suspected outbreak of FMD, or giving cause for suspicion of previous association or contact with FMDV.

Standards for diagnostic tests and vaccines are described in the Terrestrial Manual.

Article 2.2.10.2.

FMD free country where vaccination is not practised

To qualify for inclusion in the existing list of FMD free countries where vaccination is not practised, a country should:

1) have a record of regular and prompt animal disease reporting;

2) send a declaration to the OIE stating that:
 a) there has been no outbreak of FMD during the past 12 months;
 b) no evidence of FMDV infection has been found during the past 12 months;
 c) no vaccination against FMD has been carried out during the past 12 months,

 and supply documented evidence that surveillance for both FMD and FMDV infection in accordance with Appendix 3.8.7. is in operation and that regulatory measures for the prevention and control of FMD have been implemented;

3) not have imported since the cessation of vaccination any animals vaccinated against FMD.

The country will be included in the list only after the submitted evidence has been accepted by the OIE.
Appendix VII (contd)

Article 2.2.10.3.

FMD free country where vaccination is practised

To qualify for inclusion in the list of FMD free countries where vaccination is practised, a country should:

1) have a record of regular and prompt animal disease reporting;

2) send a declaration to the OIE that there has been no outbreak of FMD for the past 2 years and no evidence of FMDV circulation for the past 12 months, with documented evidence that:
 a) surveillance for FMD and FMDV circulation in accordance with Appendix 3.8.7. is in operation, and that regulatory measures for the prevention and control of FMD have been implemented;
 b) routine vaccination is carried out for the purpose of the prevention of FMD;
 c) the vaccine used complies with the standards described in the Terrestrial Manual.

The country will be included in the list only after the submitted evidence has been accepted by the OIE.

If an FMD free country where vaccination is practised wishes to change its status to FMD free country where vaccination is not practised, the country should wait for 12 months after vaccination has ceased and provide evidence showing that FMDV circulation has not occurred during that period.

Article 2.2.10.4.

FMD free zone where vaccination is not practised

An FMD free zone where vaccination is not practised can be established in either an FMD free country where vaccination is practised or in a country of which parts are infected. The animals in the FMD free zone must be separated from the rest of the country, if infected, and, if relevant, from neighbouring infected countries by a surveillance buffer zone, or physical or geographical barriers, and animal health measures that effectively prevent the entry of the virus should be implemented. A country in which an FMD free zone where vaccination is not practised is to be established should:

1) have a record of regular and prompt animal disease reporting;

2) send a declaration to the OIE stating that it wishes to establish an FMD free zone where vaccination is not practised and that:
 a) there has been no outbreak of FMD during the past 12 months;
 b) no evidence of FMDV infection has been found during the past 12 months;
 c) no vaccination against FMD has been carried out during the past 12 months;
 d) no vaccinated animal has been introduced into the zone since the cessation of vaccination, except in accordance with Articles 2.2.10.8.;

3) supply documented evidence that surveillance for both FMD and FMDV infection in accordance with Appendix 3.8.7. is in operation in the FMD free zone where vaccination is not practised;
4) describe in detail:
 a) regulatory measures for the prevention and control of both FMD and FMDV infection,
 b) the boundaries of the FMD free zone, and the surveillance buffer zone,
 c) the system for preventing the entry of the virus (including the movement of susceptible animals) into the FMDV free zone (in particular if the procedure described in Article 2.2.10.8. is implemented),

and supply documented evidence that these are properly implemented and supervised.

The free zone will be included in the list of FMD free zones where vaccination is not practised only after the submitted evidence has been accepted by the OIE.

Article 2.2.10.5.

FMD free zone where vaccination is practised

An FMD free zone where vaccination is practised can be established in either an FMD free country where vaccination is not practised or in a country of which parts are infected. Vaccination of zoo animals, animals belonging to rare species or breeds, or animals in research centres as a precaution for conservation purposes is an example of implementation of such a zone. The animals in the free zone where vaccination is practised is should be protected separated from the rest of the country, if infected, and, if relevant, from neighbouring infected countries by a buffer zone, or physical or geographical barriers, and animal health measures that effectively prevent the entry of the virus must be implemented.

Vaccination of zoo animals, animals belonging to rare species or breeds, or animals in research centres as a precaution for conservation purposes is an example of implementation of a FMD free zone compartment where vaccination is practised.

A country in which an FMD free zone where vaccination is practised is to be established should:

1) have a record of regular and prompt animal disease reporting;
2) send a declaration to the OIE that it wishes to establish an FMD free zone where vaccination is practised, where there has been no outbreak of FMD for the past 2 years and no evidence of FMDV circulation for the past 12 months, with documented evidence that surveillance for FMD and FMDV circulation in accordance with Appendix 3.8.7. is in operation;
3) supply documented evidence that the vaccine used complies with the standards described in the Terrestrial Manual;
4) describe in detail:
 a) regulatory measures for the prevention and control of both FMD and FMDV circulation,
 b) the boundaries of the FMD free zone where vaccination is practised and the buffer zone if applicable,
 c) the system for preventing the entry of the virus into the FMD free zone (in particular if the procedure described in Article 2.2.10.8. is implemented),

and supply evidence that these are properly implemented and supervised;

5) supply documented evidence that it has a system of intensive and frequent surveillance for FMD in the FMD free zone where vaccination is practised.
Appendix VII (contd)

The free zone will be included in the list of FMD free zones where vaccination is practised only after the submitted evidence has been accepted by the OIE.

If a country that has an FMD free zone where vaccination is practised wishes to change the status of the zone to FMD free zone where vaccination is not practised, a waiting period of 12 months after vaccination has ceased or 12 months after the last outbreak, whichever is later, is required and evidence must be provided showing that FMDV infection has not occurred in the said zone during that period.

Article 2.2.10.6.

FMD infected country or zone

An FMD infected country is a country that does not fulfil the requirements to qualify as either an FMD free country where vaccination is not practised or an FMD free country where vaccination is practised.

An FMD infected zone is a zone that does not fulfil the requirements to qualify as either an FMD free zone where vaccination is not practised or an FMD free zone where vaccination is practised.

Article 2.2.10.7.

Recovery of free status

1) When an FMD outbreak or FMDV infection occurs in an FMD free country or zone where vaccination is not practised, one of the following waiting periods is required to regain the status of FMD free country or zone where vaccination is not practised:

 a) 3 months after the last case where a stamping out policy and serological surveillance are applied in accordance with Appendix 3.8.7., or

 b) 3 months after the slaughter of all vaccinated animals where a stamping out policy, emergency vaccination and serological surveillance are applied in accordance with Appendix 3.8.7., or

 c) 6 months after the last case or the last vaccination (according to the event that occurs the latest), where a stamping out policy, emergency vaccination not followed by the slaughtering of all vaccinated animals, and serological surveillance are applied in accordance with Appendix 3.8.7., provided that a serological survey based on the detection of antibodies to nonstructural proteins of FMDV demonstrates the absence of infection in the remaining vaccinated population.

 Where a stamping out policy is not applied, Article 2.2.10.4. applies.

2) When an FMD outbreak or FMDV infection occurs in an FMD free country or zone where vaccination is practised, one of the following waiting periods is required to regain the status of FMD free country or zone where vaccination is practised:

 a) 6 months after the last case where a stamping-out policy, emergency vaccination and serological surveillance in accordance with Appendix 3.8.7. are applied, provided that the serological surveillance based on the detection of antibodies to nonstructural proteins of FMDV demonstrates the absence of virus circulation, or

 b) 18 months after the last case where a stamping-out policy is not applied, but emergency vaccination and serological surveillance in accordance with Appendix 3.8.7. are applied, provided that the serological surveillance based on the detection of antibodies to nonstructural proteins of FMDV demonstrates the absence of virus circulation.
Transfer directly to slaughter of FMD susceptible animals from an infected zone to a free zone within a country

Live animals from FMD susceptible species can only leave the infected zone if moved by mechanised transport to the nearest designated abattoir located in the buffer zone or the surveillance zone for immediate direct to slaughter.

In the absence of an abattoir in the buffer zone or the surveillance zone, live FMD susceptible animals can be transported to the nearest abattoir in a free zone directly to for immediate slaughter only under the following conditions:

1) no FMD susceptible animal has been introduced into the establishment of origin and no animal in the establishment of origin has shown clinical signs of FMD for at least 30 days prior to movement;

2) the animals were kept in the establishment of origin for at least 3 months prior to movement;

3) FMD has not occurred within a 10-kilometre radius of the establishment of origin for at least 3 months prior to movement;

4) the animals must be transported under the supervision of the Veterinary Authority in a vehicle, which was cleansed and disinfected before loading, directly from the establishment of origin to the abattoir without coming into contact with other susceptible animals;

5) such an abattoir is not approved for the export of fresh meat;

6) all products obtained from the animals must be considered infected and treated in such a way as to destroy any residual virus in accordance with Appendix 3.6.2;

vehicles and the abattoir must be subjected to thorough cleansing and disinfection immediately after use.

All products obtained from the animals and any products coming into contact with them must be considered infected, and treated in such a way as to destroy any residual virus in accordance with Appendix 3.6.2.

Animals moved into a free zone for other purposes must be moved under the supervision of the Veterinary Authority and comply with the conditions in Article 2.2.10.11.

Article 2.2.10.9.

When importing from FMD free countries or zones where vaccination is not practised, Veterinary Administrations should require:

for FMD susceptible animals

the presentation of an international veterinary certificate attesting that the animals:

1) showed no clinical sign of FMD on the day of shipment;

2) were kept in an FMD free country or zone where vaccination is not practised since birth or for at least the past 3 months.
Appendix VII (contd)

Article 2.2.10.10.

When importing from FMD free countries or zones where vaccination is practised, Veterinary Administrations should require:

for domestic ruminants and pigs

the presentation of an international veterinary certificate attesting that the animals:

1) showed no clinical sign of FMD on the day of shipment;
2) were kept in an FMD free country since birth or for at least the past 3 months; and
3) have not been vaccinated and were subjected, with negative results, to tests for antibodies against FMD virus, when destined to an FMD free country or zone where vaccination is not practised.

Article 2.2.10.11.

When importing from FMD infected countries or zones, Veterinary Administrations should require:

for domestic ruminants and pigs

the presentation of an international veterinary certificate attesting that the animals:

1) showed no clinical sign of FMD on the day of shipment;
2) were kept in the establishment of origin since birth or
 a) for the past 30 days, if a stamping out policy is in force in the exporting country, or
 b) for the past 3 months, if a stamping out policy is not in force in the exporting country,
 and that FMD has not occurred within a 10-kilometre radius of the establishment of origin for the relevant period as defined in points a) and b) above; and
3) were isolated in an establishment for the 30 days prior to shipment, and all animals in isolation were subjected to diagnostic tests (probang and serology) for evidence of FMDV infection with negative results at the end of that period, and that FMD did not occur within a 10-kilometre radius of the establishment during that period; or
4) were kept in a quarantine station for the 30 days prior to shipment, all animals in quarantine were subjected to diagnostic tests (probang and serology) for evidence of FMDV infection with negative results at the end of that period, and that FMD did not occur within a 10-kilometre radius of the quarantine station during that period;
5) were not exposed to any source of FMD infection during their transportation from the quarantine station to the place of shipment.

Article 2.2.10.12.

When importing from FMD free countries or zones where vaccination is not practised, Veterinary Administrations should require:

for fresh semen of domestic ruminants and pigs
the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) showed no clinical sign of FMD on the day of collection of the semen;
 b) were kept in an FMD free country or zone where vaccination is not practised for at least 3 months prior to collection;

2) the semen was collected, processed and stored in conformity with the provisions of Appendix 3.2.1., Appendix 3.2.2. or Appendix 3.2.3., as relevant.

Article 2.2.10.13.

When importing from FMD free countries or zones where vaccination is not practised, Veterinary Administrations should require:

for frozen semen of domestic ruminants and pigs

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) showed no clinical sign of FMD on the day of collection of the semen and for the following 30 days;
 b) were kept in an FMD free country or zone where vaccination is not practised for at least 3 months prior to collection;

2) the semen was collected, processed and stored in conformity with the provisions of Appendix 3.2.1., Appendix 3.2.2. or Appendix 3.2.3., as relevant.

Article 2.2.10.14.

When importing from FMD free countries or zones where vaccination is practised, Veterinary Administrations should require:

for semen of domestic ruminants and pigs

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) showed no clinical sign of FMD on the day of collection of the semen and for the following 30 days;
 b) were kept in a country or zone free from FMD for at least 3 months prior to collection;
 c) if destined to an FMD free country or zone where vaccination is not practised:
 i) have not been vaccinated and were subjected, not less than 21 days after collection of the semen, to tests for antibodies against FMD virus, with negative results; or
 ii) had been vaccinated at least twice, with the last vaccination not more than 12 and not less than one month prior to collection;
Appendix VII (contd)

2) no other animal present in the artificial insemination centre has been vaccinated within the month prior to collection;

3) the semen:
 a) was collected, processed and stored in conformity with the provisions of Appendix 3.2.1., Appendix 3.2.2. or Appendix 3.2.3., as relevant;
 b) was stored in the country of origin for a period of at least one month following collection, and during this period no animal on the establishment where the donor animals were kept showed any sign of FMD.

Article 2.2.10.15.

When importing from FMD infected countries or zones, Veterinary Administrations should require:

for semen of domestic ruminants and pigs

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) showed no clinical sign of FMD on the day of collection of the semen;
 b) were kept in an establishment where no animal had been added in the 30 days before collection, and that FMD has not occurred within 10 kilometres for the 30 days before and after collection;
 c) have not been vaccinated and were subjected, not less than 21 days after collection of the semen, to tests for antibodies against FMD virus, with negative results; or
 d) had been vaccinated at least twice, with the last vaccination not more than 12 and not less than one month prior to collection;

2) no other animal present in the artificial insemination centre has been vaccinated within the month prior to collection;

3) the semen:
 a) was collected, processed and stored in conformity with the provisions of Appendix 3.2.1., Appendix 3.2.2. or Appendix 3.2.3., as relevant;
 b) was subjected, with negative results, to a test for FMDV infection if the donor animal has been vaccinated within the 12 months prior to collection;
 c) was stored in the country of origin for a period of at least one month following collection, and during this period no animal on the establishment where the donor animals were kept showed any sign of FMD.

Article 2.2.10.16.

Irrespective of the FMD status of the exporting country or zone, Veterinary Administrations should authorise without restriction on account of FMD the import or transit through their territory of in vivo derived embryos of cattle subject to the presentation of an international veterinary certificate attesting that the embryos were collected, processed and stored in conformity with the provisions of Appendix 3.3.1. or Appendix 3.3.3., as relevant.
Article 2.2.10.17.

When importing from FMD free countries or zones where vaccination is not practised, Veterinary Administrations should require:

for in vitro produced embryos of cattle

the presentation of an international veterinary certificate attesting that:

1) the donor females:
 a) showed no clinical sign of FMD at the time of collection of the oocytes;
 b) were kept in a country or zone free from FMD at the time of collection;

2) fertilisation was achieved with semen meeting the conditions referred to in Articles 2.2.10.12., 2.2.10.13., 2.2.10.14. or 2.2.10.15., as relevant;

3) the oocytes were collected, and the embryos were processed and stored in conformity with the provisions of Appendix 3.3.2. or Appendix 3.3.3., as relevant.

Article 2.2.10.18.

When importing from FMD free countries or zones where vaccination is practised, Veterinary Administrations should require:

for in vitro produced embryos of cattle

the presentation of an international veterinary certificate attesting that:

1) the donor females:
 a) showed no clinical sign of FMD at the time of collection of the oocytes;
 b) were kept in a country or zone free from FMD for at least 3 months prior to collection;
 c) if destined for an FMD free country or zone where vaccination is not practised:
 i) have not been vaccinated and were subjected, with negative results, to tests for antibodies against FMD virus, or
 ii) had been vaccinated at least twice, with the last vaccination not less than one month and not more than 12 months prior to collection;

2) no other animal present in the establishment has been vaccinated within the month prior to collection;

3) fertilization was achieved with semen meeting the conditions referred to in Articles 2.2.10.12., 2.2.10.13., 2.2.10.14. or 2.2.10.15., as relevant;

4) the oocytes were collected, and the embryos were processed and stored in conformity with the provisions of Appendix 3.3.2. or Appendix 3.3.3., as relevant.
Appendix VII (contd)

Article 2.2.10.19.

When importing from FMD free countries or zones where vaccination is not practised, Veterinary Administrations should require:

for fresh meat of FMD susceptible animals

the presentation of an _international veterinary certificate_ attesting that the entire consignment of meat comes from animals which:

1) have been kept in the FMD free country or zone where vaccination is not practised since birth, or which have been imported in accordance with Article 2.2.10.9., Article 2.2.10.10. or Article 2.2.10.11.;

2) have been slaughtered in an _approved abattoir_ and have been subjected to ante-mortem and post-mortem inspections for FMD with favourable results.

Article 2.2.10.20.

When importing from FMD free countries where vaccination is practised or from FMD free zones where vaccination is practised, Veterinary Administrations should require:

for fresh meat of cattle and buffalo bovines (excluding feet, head and viscera)

the presentation of an _international veterinary certificate_ attesting that the entire consignment of meat comes from animals which:

1) have been kept in the FMD free country or zone where vaccination is practised since birth, or which have been imported in accordance with Article 2.2.10.9., Article 2.2.10.10. or Article 2.2.10.11.;

2) have been slaughtered in an _approved abattoir_ and have been subjected to ante-mortem and post-mortem inspections for FMD with favourable results.

Article 2.2.10.21.

When importing from FMD free countries where vaccination is practised or from FMD free zones where vaccination is practised, Veterinary Administrations should require:

for fresh meat or meat products of pigs and ruminants other than cattle and buffalo bovines

the presentation of an _international veterinary certificate_ attesting that the entire consignment of meat comes from animals which:

1) have been kept in the FMD free country or zone where vaccination is practiced since birth, or which have been imported in accordance with Article 2.2.10.9., Article 2.2.10.10. or Article 2.2.10.11.;

2) have not been vaccinated;

3) have been slaughtered in an _approved abattoir_ and have been subjected to ante-mortem and post-mortem inspections for FMD with favourable results.
Appendix VII (contd)

Article 2.2.10.22.

When importing from FMD infected countries or zones, where an official control programme exists, involving compulsory systematic vaccination of cattle, Veterinary Administrations should require:

for fresh meat of bovines (excluding feet, head and viscera)

the presentation of an international veterinary certificate attesting that the entire consignment of meat:

1) comes from animals which:
 a) have remained in the exporting country for at least 3 months prior to slaughter;
 b) have remained, during this period, in a part of the country where cattle are regularly vaccinated against FMD and where official controls are in operation;
 c) have been vaccinated at least twice with the last vaccination not more than 12 months and not less than one month prior to slaughter;
 d) were kept for the past 30 days in an establishment, and that FMD has not occurred within a 10-kilometre radius of the establishment during that period;
 e) have been transported, in a vehicle which was cleansed and disinfected before the cattle were loaded, directly from the establishment of origin to the approved abattoir without coming into contact with other animals which do not fulfil the required conditions for export;
 f) have been slaughtered in an approved abattoir:
 i) which is officially designated for export;
 ii) in which no FMD has been detected during the period between the last disinfection carried out before slaughter and the shipment for export has been dispatched;
 g) have been subjected to ante-mortem and post-mortem inspections for FMD with favourable results within 24 hours before and after slaughter;

2) comes from deboned carcasses:
 a) from which the major lymph nodes have been removed;
 b) which, prior to deboning, have been submitted to maturation at a temperature above +2°C for a minimum period of 24 hours following slaughter and in which the pH value was below 6.0 when tested in the middle of both the longissimus dorsi.

Article 2.2.10.23.

When importing from FMD infected countries or zones, Veterinary Administrations should require:

for meat products of domestic ruminants and pigs

the presentation of an international veterinary certificate attesting that:

1) the entire consignment of meat comes from animals which have been slaughtered in an approved abattoir and have been subjected to ante-mortem and post-mortem inspections for FMD with favourable results;
Appendix VII (contd)

2) the meat has been processed to ensure the destruction of the FMD virus in conformity with one of the procedures referred to in Article 3.6.2.1.;

3) the necessary precautions were taken after processing to avoid contact of the meat products with any potential source of FMD virus.

Article 2.2.10.24.

When importing from FMD free countries or zones (where vaccination either is or is not practised), Veterinary Administrations should require:

for milk and milk products intended for human consumption and for products of animal origin (from FMD susceptible animals) intended for use in animal feeding or for agricultural or industrial use

the presentation of an international veterinary certificate attesting that these products come from animals which have been kept in the country or zone since birth, or which have been imported in accordance with Article 2.2.10.9, Article 2.2.10.10 or Article 2.2.10.11.

Article 2.2.10.25.

When importing from FMD infected countries or zones where an official control programme exists, Veterinary Administrations should require:

for milk, cream, milk powder and milk products

the presentation of an international veterinary certificate attesting that:

1) these products:
 a) originate from herds or flocks which were not infected or suspected of being infected with FMD at the time of milk collection;
 b) have been processed to ensure the destruction of the FMD virus in conformity with one of the procedures referred to in Article 3.6.2.5. and in Article 3.6.2.6.;

2) the necessary precautions were taken after processing to avoid contact of the products with any potential source of FMD virus.

Article 2.2.10.26.

When importing from FMD infected countries, Veterinary Administrations should require:

for blood and meat-meals (from domestic or wild ruminants and pigs)

the presentation of an international veterinary certificate attesting that the manufacturing method for these products included heating to a minimum internal temperature of 70°C for at least 30 minutes.

Article 2.2.10.27.

When importing from FMD infected countries, Veterinary Administrations should require:

for wool, hair, bristles, raw hides and skins (from domestic or wild ruminants and pigs)

the presentation of an international veterinary certificate attesting that:
Appendix VII (contd)

1) these products have been processed to ensure the destruction of the FMD virus in conformity with one of the procedures referred to in Articles 3.6.2.2., 3.6.2.3. and 3.6.2.4.;

2) the necessary precautions were taken after collection or processing to avoid contact of the products with any potential source of FMD virus.

Veterinary Administrations can authorise, without restriction, the import or transit through their territory of semi-processed hides and skins (limed hides, pickled pelts, and semi-processed leather - e.g. wet blue and crust leather), provided that these products have been submitted to the usual chemical and mechanical processes in use in the tanning industry.

Article 2.2.10.28.

When importing from FMD infected countries or zones, Veterinary Administrations should require:

for straw and forage

the presentation of an international veterinary certificate attesting that these commodities:

1) are free of grossly identifiable contamination with material of animal origin;

2) have been subjected to one of the following treatments, which, in the case of material sent in bales, has been shown to penetrate to the centre of the bale:

 a) either to the action of steam in a closed chamber such that the centre of the bales has reached a minimum temperature of 80°C for at least 10 minutes,

 b) or to the action of formalin fumes (formaldehyde gas) produced by its commercial solution at 35-40% in a chamber kept closed for at least 8 hours and at a minimum temperature of 19°C;

OR

3) have been kept in bond for at least 3 months (under study) before being released for export.

Article 2.2.10.29.

When importing from FMD free countries or zones (where vaccination either is or is not practised), Veterinary Administrations should require:

for skins and trophies derived from wild animals susceptible to FMD

the presentation of an international veterinary certificate attesting that these products are derived from animals that have been kept in such a country or zone since birth, or which have been imported from a country or zone free of FMD (where vaccination either is or is not practised).

Article 2.2.10.30.

When importing from FMD infected countries or zones, Veterinary Administrations should require:

for skins and trophies derived from wild animals susceptible to FMD
Appendix VII (contd)

the presentation of an international veterinary certificate attesting that these products have been processed to ensure the destruction of the FMD virus in conformity with the procedures referred to in Article 3.6.2.7.

[Note: International veterinary certificates for animal products coming from infected countries or zones may not be required if the products are transported in an approved manner to premises controlled and approved by the Veterinary Administration of the importing country for processing to ensure the destruction of the FMD virus in conformity with the procedures referred to in Articles 3.6.2.2., 3.6.2.3. and 3.6.2.4.]

— text deleted
Appendix VIII

APPENDIX 3.8.7.

GUIDELINES FOR THE SURVEILLANCE REQUIRED TO SUPPORT THE ESTABLISHMENT OR REGAINING OF RECOGNITION FOR A FOOT AND MOUTH DISEASE FREE COUNTRY OR ZONE

GUIDELINES FOR THE SURVEILLANCE OF FOOT AND MOUTH DISEASE

Article 3.8.7.1.

Introduction

This Appendix defines the principles and provides a guide for the surveillance of foot and mouth disease (FMD) in accordance with Appendix 3.8.1, applicable to countries seeking recognition from the OIE for freedom from FMD, either with or without the use of vaccination. This may be for the entire country or a zone or compartment within the country. Guidance for countries seeking reestablishment of freedom from FMD for the whole country or a zone or a compartment, either with or without vaccination, following an outbreak, as well as guidelines for the maintenance of FMD status are provided. These guidelines are intended to expand on and explain the requirements of Chapter 2.2.10. Applications to the OIE for such recognition of freedom should follow the format and answer all the questions posed by the “Questionnaire on FMD” available from the OIE Central Bureau.

Reference to vaccination in this guide implies vaccination as part of an official disease control programme under the supervision of the Veterinary Administration aimed at interrupting the transmission of FMD virus (FMDV) in the zone or country concerned. The level of herd immunity required to achieve interruption of transmission will depend on the size, composition (e.g. species) and density of the susceptible population. It is therefore impossible to be prescriptive in this matter but, in general, unless there are good reasons to employ a different target, the aim should be to vaccinate at least 80% of the susceptible population in the manner and at the frequency prescribed by the manufacturer of the vaccine concerned. The vaccine must also comply with the provisions stipulated for FMD vaccines in the Terrestrial Manual. It may be that a decision is reached to vaccinate only certain species or other subset of the total susceptible population. In that case the rationale should be contained within the dossier accompanying the application to the OIE for recognition of a free country or zone or recovery of such status.

The impact and epidemiology of FMD differ widely in different regions of the world and therefore it is impossible to provide specific guidelines for all situations. It is axiomatic that the surveillance strategies employed for demonstrating freedom from FMD at an acceptable level of confidence will need to be adapted to the local situation. For example, the approach to proving freedom from FMD following an outbreak caused by a pig-adapted strain of FMD virus (FMDV) should differ significantly from an application designed to prove freedom from FMD for a country or zone where African buffaloes (Syncerus caffer) provide a potential reservoir of infection. It is incumbent upon the applicant country to submit a dossier to the OIE in support of its application that not only explains the epidemiology of FMD in the region concerned but also demonstrates how all the risk factors are managed. This should include provision of scientifically based supporting data. There is therefore considerable latitude available to Member Countries to provide a well-reasoned argument to prove that the absence of FMDV infection (in non-vaccinated populations) or circulation (in vaccinated populations) is assured at an acceptable level of confidence.
Appendix VIII (contd)

Surveillance for FMD may be in the form of a continuing disease surveillance programme or it may be a specific programme designed to establish that the whole territory or part of it is free from FMDV infection/circulation.

For the purpose of this Appendix, virus circulation means transmission of FMDV as demonstrated by clinical signs, serological evidence or virus isolation.

Article 3.8.7.2.

General conditions and methods

1) A surveillance system in accordance with Appendix 3.8.1 should be under the responsibility of the Veterinary Administration. A procedure should be in place for the rapid collection and transport of samples from suspect cases of FMD to a laboratory for FMD diagnoses as described in the Terrestrial Manual.

2) The FMD surveillance programme should:

 a) include an early warning system throughout the production, marketing and processing chain for reporting suspicious cases. Farmers and workers who have day-to-day contact with livestock, as well as diagnosticians, should be encouraged to report promptly any suspicion of FMD clinical disease resembling FMD. They should be supported directly or indirectly (e.g. through private veterinarians or veterinary para-professionals) by government information programmes and the Veterinary Administration. All suspect cases of FMD should be investigated immediately. Where suspicion cannot be resolved by epidemiological and clinical investigation, samples should be taken and submitted to an approved laboratory and, if still considered suspect, samples should be taken and submitted to an approved laboratory. This requires that sampling kits and other equipment are available for those responsible for surveillance. Personnel responsible for surveillance should be able to call for assistance from a team with expertise in FMD diagnosis and control;

 b) implement, when relevant, regular and frequent clinical inspection and serological testing of high-risk groups of animals, such as those adjacent to an FMD infected country or zone (for example, bordering a game park in which infected wildlife are present).

An effective surveillance system will periodically identify suspicious cases that require follow up and investigation to confirm or exclude that the cause of the condition is FMDV. The rate at which such suspicious cases are likely to occur will differ between epidemiological situations and cannot therefore be predicted reliably. Applications for freedom from FMDV infection/circulation should, in consequence, provide details of the occurrence of suspicious cases and how they were investigated and dealt with. This should include the results of laboratory testing and the control measures to which the animals concerned were subjected during the investigation (quarantine, movement stand-still orders, etc.).

During investigation into suspected outbreaks of FMD, it is necessary to apply measures that will contain the infection to its original locality until such time as the diagnosis is confirmed or refuted, e.g. through application of quarantine measures. The details of actions that need to be applied in such situations are not covered by this guide.

3) These general requirements apply in all Member Countries submitting their annual request for reconfirmation of FMD free status although active surveillance for FMD is not a requirement for countries that are recognised by the OIE as being free from FMD without vaccination. An active surveillance programme is required from Member Countries applying for the first time for recognition of freedom from FMD for the whole country or zone either with or without vaccination. It is also a requirement for countries seeking recognition for the recovery of their former status following an outbreak.
Appendix VIII (contd)

Article 3.8.7.2.bis

Surveillance strategies

1) Introduction

The target population for surveillance aimed at identification of disease and infection should cover all the susceptible species within the country or zone to be recognised as free from FMDV infection/circulation.

The strategy employed may be based on randomised sampling requiring surveillance consistent with demonstrating the absence of FMDV infection/circulation at an acceptable level of statistical confidence. The frequency of sampling should be dependent on the epidemiological situation. Targeted surveillance (e.g. based on the increased likelihood of infection in particular localities or species) may be an appropriate strategy. The applicant country should justify the surveillance strategy chosen as adequate to detect the presence of FMDV infection/circulation in accordance with Appendix 3.8.1, and the epidemiological situation. It may, for example, be appropriate to target clinical surveillance at particular species likely to exhibit clear clinical signs (e.g. cattle and pigs). If a Member Country wishes to apply for recognition of a specific zone or compartment within the country as being free from FMDV infection/circulation, the design of the survey and the basis for the sampling process would need to be aimed at the population within the zone or compartment.

For random surveys, the design of the sampling strategy will need to incorporate an epidemiologically appropriate design prevalence. The sample size selected for testing will need to be large enough to detect infection/circulation if it were to occur at a predetermined minimum rate. The sample size and expected disease prevalence determine the level of confidence in the results of the survey. The applicant country must justify the choice of design prevalence and confidence level based on the objectives of surveillance and the epidemiological situation, in accordance with Appendix 3.8.1. Selection of the design prevalence in particular clearly needs to be based on the prevailing or historical epidemiological situation.

Irrespective of the survey design selected, the sensitivity and specificity of the diagnostic tests employed are key factors in the design, sample size determination and interpretation of the results obtained. Ideally, the sensitivity and specificity of the tests used should be validated for the vaccination/infection history and production class of animals in the target population.

Irrespective of the testing system employed, surveillance design should anticipate the occurrence of false positive reactions. If the characteristics of the testing system are known, the rate at which these false positives are likely to occur can be calculated in advance. There needs to be an effective procedure for following up positives to ultimately determine with a high level of confidence, whether they are indicative of infection/circulation or not. This should involve both supplementary tests and follow-up investigation to collect diagnostic material from the original sampling unit as well as herds which may be epidemiologically linked to it.

The principles involved in surveillance for disease/infection are technically well defined. The design of surveillance programmes to prove the absence of FMDV infection/circulation needs to be carefully followed to avoid producing results that are either insufficiently reliable to be accepted by the OIE or international trading partners, or excessively costly and logistically complicated. The design of any surveillance programme, therefore, requires inputs from professionals competent and experienced in this field.

2) Clinical surveillance

Clinical surveillance aims at the detection of clinical signs of FMD by close physical examination of susceptible animals. Whereas significant emphasis is placed on the diagnostic value of mass serological screening, surveillance based on clinical inspection should not be underrated. It may be able to provide a high level of confidence of detection of disease if a sufficiently large number of clinically susceptible animals is examined.
Appendix VIII (contd)

Clinical surveillance and laboratory testing should always be applied in series to clarify the status of FMD suspects detected by either of these complementary diagnostic approaches. Laboratory testing may confirm clinical suspicion, while clinical surveillance may contribute to confirmation of positive serology. Any sampling unit within which suspicious animals are detected should be classified as infected until contrary evidence is produced.

A number of issues must be considered in clinical surveillance for FMD. The often underestimated labour intensity and the logistical difficulties involved in conducting clinical examinations should not be underestimated and should be taken into account.

Identification of clinical cases is fundamental to FMD surveillance. Establishment of the molecular, antigenic and other biological characteristics of the causative virus, as well as its source, is dependent upon disclosure of such animals. It is essential that FMDV isolates are sent regularly to the regional reference laboratory for genetic and antigenic characterization.

3) Virological surveillance

Virological surveillance using tests described in the Terrestrial Manual should be conducted:

a) to monitor at risk populations;

b) to confirm clinically suspect cases;

c) to follow up positive serological results;

d) to test “normal” daily mortality, to ensure early detection of infection in the face of vaccination or in establishments epidemiologically linked to an outbreak.

4) Serological surveillance

Serological surveillance aims at the detection of antibodies against FMDV. Positive FMDV antibody test results can have four possible causes:

a) natural infection with FMDV;

b) vaccination against FMD;

c) maternal antibodies derived from an immune dam (maternal antibodies in cattle are usually found only up to 6 months of age but in some individuals and in some species, maternal antibodies can be detected for considerably longer periods);

d) heterophile (cross) reactions.

It is important that serological tests, where applicable, contain antigens appropriate for detecting antibodies against viral variants (types, subtypes, lineages, topotypes, etc.) that have recently occurred in the region concerned. Where the probable identity of FMDVs is unknown or where exotic viruses are suspected to be present, tests able to detect representatives of all serotypes should be employed (e.g. tests based on nonstructural viral proteins – see below).

It may be possible to use serum collected for other survey purposes for FMD surveillance. However, the principles of survey design described in this Appendix and the requirement for a statistically valid survey for the presence of FMDV should not be compromised.
The discovery of clustering of seropositive reactions should be foreseen. It may reflect any of a series of events, including but not limited to the demographics of the population sampled, vaccinal exposure or the presence of field strain infection. As clustering may signal field strain infection, the investigation of all instances must be incorporated in the survey design. If vaccination cannot be excluded as the cause of positive serological reactions, diagnostic methods should be employed that detect the presence of antibodies to nonstructural proteins (NSPs) of FMDVs as described in the Terrestrial Manual.

The results of random or targeted serological surveys are important in providing reliable evidence that FMDV infection is not present in a country or zone. It is therefore essential that the survey be thoroughly documented.

Article 3.8.7.3.

Documentation of FMD free status

Countries applying for freedom from FMD for the whole country or a zone/compartment where vaccination is not practised

1) Introduction

A Member Country applying for recognition of freedom for the country or a zone from FMD where vaccination is not practised should provide evidence for the existence of an effective surveillance programme. The strategy and design of the surveillance programme will depend on the prevailing epidemiological circumstances. Conventionally, a statistically significant proportion of the whole population should be subjected to clinical and serological surveillance to demonstrate absence of FMDV, i.e., circulation of virus, during the preceding 12 months. This requires the support of a national or other laboratory able to undertake identification of FMDV infection through virus/antigen/genome detection and antibody tests described in the Terrestrial Manual.

2) Survey design

The target population for surveillance aimed at identification of disease and infection should cover all the susceptible species within the country or zone to be recognised as free from infection. This would usually require stratification of different species.

Countries wishing to show freedom from FMDV infection in which a pig-adapted strain of virus had been prevalent should concentrate on sampling the national pig population. However, it would also be necessary to show that no spill over into other susceptible species has occurred. In countries or zones in which an African buffalo population is present, the buffaloes should also be sampled if included in the proposed FMDV infection-free zone.

The strategy employed may be based either on randomised sampling requiring surveillance consistent with demonstrating the absence of infection at an acceptable level of statistical confidence. The frequency of sampling would be dependent on the epidemiological situation, but should occur at least once during the year preceding the application. Alternatively, targeted surveillance (e.g., based on the likelihood of infection in particular localities or species) may provide a more appropriate and cost-effective strategy. If the latter approach is used, it would be incumbent upon the applicant country to show that the surveillance conducted was at least as effective as randomised surveillance with stratification of different susceptible species. It may, for example, be appropriate to target clinical surveillance at particular species likely to exhibit clear clinical signs (e.g., cattle and pigs) while directing serological surveillance at species that tend to develop less obvious signs of infection such as sheep and, in some locations, goats and wildlife species.
If a Member Country wishes to apply for recognition of a specific zone/region within the country as being free from FMDV infection, the design of the survey and the basis for the sampling process would need to be aimed at the population within the zone/region.

For randomised surveillance, the design of the sampling strategy will need to incorporate an epidemiologically appropriate design prevalence because, obviously, the sample selected for testing will need to be large enough to detect infection if it were to occur at a predetermined minimum rate. The sample size and expected disease prevalence determine the level of confidence in the result of the survey. A typical random sampling strategy would be one that provides 95% probability of detecting evidence of FMD or FMDV infection if it were present in 1% of the primary sampling units. A minimum expected level of infection within sampling units also has to be set to ensure that a sufficient number of animals within each sampling unit is tested to detect the infection if it were present in the sampling unit. Typically this value is set somewhere between 5-20% with a confidence level of 95%. In many instances it could be safely assumed that within sampling unit prevalence would be greater than 5% bearing in mind the contagiousness of FMDV. Selection of the prevalence estimate clearly needs to be based on the prevailing or historical epidemiological situation. The reasoning used in the selection of prevalence parameters needs to be clearly spelt out in the dossier supplied to the OIE when applications are made for recognition of freedom from FMD.

The sensitivities and specificities of the testing methods employed also affect the design of sampling strategies. Clinical inspection, for example, typically has low sensitivity, especially in species that tend to suffer mild or indistinct signs of FMD (e.g. sheep). In other words, the probability of detecting FMD infection through identification of clinical cases is not particularly dependable and this therefore needs to be allowed for in the sampling design. For proving absence of infection through serology, it is usually desirable to have either a test with both high sensitivity (likely to detect a high proportion of seropositive individuals) and specificity (few false-positive animals likely to be identified) or to use a combination of tests that together provide high net sensitivity and specificity. However, even if the net specificity is high, in cases where the design prevalence is low (e.g. in situations where proving absence of FMD is the objective), the positive predictive value (PV) of a test or testing system may be considerably lower than 100% (because PV is mainly a function of specificity and prevalence). This means that in such circumstances it needs to be anticipated that false positive results will occur. If the characteristics of the testing system are known, the rate at which these false positive are likely to occur can be calculated. In such circumstances detected prevalence rates significantly greater than the calculated rate would be suspicious of infection. More typically, the parameters of the testing system are imprecisely known and therefore an element of judgement in the interpretation of serological results will be necessary. Whatever the case, there needs to be an effective procedure for following up serological positives to determine ultimately, to a high level of probability, whether they are indicative of infection or not. This should involve both supplementary laboratory tests (see below) and further field follow-up to collect diagnostic material from the original sampling unit if possible as well as animals in the vicinity which may be epidemiologically linked to the suspect focus.

It is evident from the above that although the principles involved in surveillance for disease/infection are reasonably straightforward, design of large surveillance programmes to prove absence of FMD needs to be carefully done to avoid producing results that are either insufficiently reliable to be accepted by the OIE or international trading partners or excessively costly and logistically complicated. The design of any large surveillance programme therefore requires inputs from competent and experienced professionals in this field.

3) Clinical surveillance

Clinical surveillance aims at the detection of clinical signs of FMD by close inspection of susceptible animals. It is essential that all animals within the selected primary sampling unit are examined for signs of FMD. Any unit where suspicious animals are detected should be classified as infected until contrary evidence is produced.
There are a number of issues that need to be considered in clinical surveillance for FMD. Some of these (e.g. the general insensitivity of clinical surveillance and species differences) have been mentioned above. The practical difficulty, hard work and boredom involved in conducting repetitive clinical examinations are almost invariably underestimated (hence the low sensitivity). This therefore needs to be borne in mind in the surveillance design.

Furthermore, now that the emphasis of the chapter of this Terrestrial Code on FMD is on detection of infection rather than disease, it needs to be remembered that in practice detection of disease is only one of the ways in which infection can be identified. Other techniques, such as serology, may be more sensitive especially in situations where vaccination is not practised but, on the other hand, identification of clinical cases is still fundamental to FMD surveillance. Identification of such cases is also vital in providing sources of the causative virus that enable the molecular, antigenic and other biological characteristics of the virus to be established. It is essential that FMDV isolates are sent regularly to the regional reference laboratory for genetic and antigenic characterisation.

4) Serological surveillance

Serological surveillance aims at the detection of antibodies against FMDV. Positive tests for FMDV antibody tests can have four possible causes:

a) natural infection with FMDV;

b) vaccination against FMD;

c) maternal antibodies derived from an immune dam (maternal antibodies in cattle are usually found only up to 6 months of age, however, in some individuals and in buffalo calves, maternal antibody can be detected for considerably longer);

d) heterophile (cross) reactions.

It is important that serological tests, where appropriate, contain antigens appropriate for detecting viral variants (types, subtypes, lineages, topotypes, etc.) that have recently occurred in the region concerned. Where the probable identity of FMDVs is unknown or where exotic viruses are suspected to be present, tests able to detect representatives of all serotypes should be employed (e.g. tests based on nonstructural viral proteins—see below).

It may be possible to use serum collected for other survey purposes for FMD surveillance but the requirement for a statistically valid survey for the presence of FMDV should not be compromised.

General considerations in the design and conduct of sero-surveys have been addressed above (see Survey design). An important issue requiring planning is the procedure to be followed in the event that seropositives are detected. As already indicated, it is likely that where the design prevalence is low false positive results should be anticipated. When these occur, both laboratory and field follow-up are necessary to differentiate between true and false positives.

Infected animals are unlikely to be evenly dispersed within the population and a cross-sectional analysis will usually detect clusters of infection. FMD is no exception to this general rule. Therefore, it is important to identify clusters of seropositive animals through simple mapping or more sophisticated cluster analysis.

If vaccination cannot be excluded as the cause of positive serological reactions, testing for the presence of antibodies to the nonstructural proteins (NSPs) of FMDVs (as described in the Terrestrial Manual) should be used.
Appendix VIII (contd)

The results of random sample or targeted surveys based on serology are important in providing reliable evidence that no FMDV infection is present in a country or zone. It is therefore essential that the survey be thoroughly documented.

In addition to the general conditions described in Chapter 2.2.10., a Member Country applying for recognition of FMD freedom for the country or a zone/compartment where vaccination is not practised should provide evidence for the existence of an effective surveillance programme. The strategy and design of the surveillance programme will depend on the prevailing epidemiological circumstances and will be planned and implemented according to general conditions and methods in this Appendix, to demonstrate absence of FMDV infection, during the preceding 12 months in susceptible populations. This requires the support of a national or other laboratory able to undertake identification of FMDV infection through virus/antigen/genome detection and antibody tests described in the Terrestrial Manual.

Article 3.8.7.4.

Countries, zones or compartments applying for freedom from FMD where vaccination is practised

In addition to the general conditions, a country or zone applying for recognition of freedom from FMD with vaccination should show evidence of an effective surveillance programme for clinical disease and demonstrate that FMD has not occurred in the country or zone for the past 2 years. Furthermore, surveillance for FMDV infection should show that FMDV has not been circulating in the vaccinated population within the past 12 months. This will require serological surveillance incorporating tests able to detect antibodies to NSPs as described in Article 3.8.6.6.

In addition to the general conditions described in Chapter 2.2.10., a Member Country applying for recognition of country or zone/compartment freedom from FMD with vaccination should show evidence of an effective surveillance programme planned and implemented according to general conditions and methods in this Appendix. Absence of clinical disease in the country, zone or compartment for the past 2 years should be demonstrated. Furthermore, surveillance should demonstrate that FMDV has not been circulating in any susceptible population during the past 12 months. This will require serological surveillance incorporating tests able to detect antibodies to NSPs as described in the Terrestrial Manual. Vaccination to prevent the transmission of FMDV may be part of a disease control programme. The level of herd immunity required to prevent transmission will depend on the size, composition (e.g. species) and density of the susceptible population. It is therefore impossible to be prescriptive. However, in general the aim should be to vaccinate at least 80% of the susceptible population. The vaccine must comply with the Terrestrial Manual. Based on the epidemiology of FMD in the country, zone or compartment, it may be that a decision is reached to vaccinate only certain species or other subsets of the total susceptible population. In that case, the rationale should be contained within the dossier accompanying the application to the OIE for recognition of status.

Evidence to show the effectiveness of the vaccination programme is recommended should be provided.

Article 3.8.7.5.

Countries, zones or compartments re-applying for freedom from FMD where vaccination is either practised or not practised, following an outbreak

In addition to the general conditions described in Chapter 2.2.10., a country re-applying for country, zone or compartment freedom from FMD where vaccination is practised or not practised should show evidence of an active surveillance programme for FMD as well as absence of FMDV infection/circulation. This will require serological surveillance incorporating, in the case of a country, zone or compartment practising vaccination, tests able to detect antibodies to NSPs as described in the Terrestrial Manual. This is particularly important if a country intends for the whole of its territory or a zone to avail itself of the possibility of a reduced waiting period, i.e. less than 2 years after the last outbreak.
Four strategies are recognised by the OIE in a programme to eradicate FMDV infection following an outbreak:

1) Slaughter of all clinically affected and in-contact susceptible animals;
2) Slaughter of all clinically affected and in-contact susceptible animals and vaccination of at-risk animals, with subsequent slaughter of vaccinated animals;
3) Slaughter of all clinically affected and in-contact susceptible animals and vaccination of at-risk animals, without subsequent slaughter of vaccinated animals;
4) Vaccination used without slaughter of affected animals or subsequent slaughter of vaccinated animals.

The time periods before which an application can be made for re-instatement of freedom from FMD depends on which of these alternatives is followed. The time periods are prescribed in Article 2.2.10.7.

In all circumstances, a Member Country re-applying for country, zone or compartment freedom from FMD with vaccination or without vaccination in a country or zone should report the results of an active surveillance programme implemented according to general conditions and methods in this Appendix in which the FMD susceptible population undergoes regular clinical examination or where active surveillance has targeted a statistically significant sample of the susceptible population. In addition, a statistically significant sample, based on the susceptible population at risk during the outbreak, would need to be tested for absence of FMDV infection. In particular circumstances, targeted surveillance could be used to accomplish the task. The procedures are outlined above.

Article 3.8.7.6.

The recommended serological tests for FMD surveillance are described in the Terrestrial Manual.

ELISAs based on structural proteins are useful for screening sera for evidence of infection in animals that have not been vaccinated. However, although their sensitivity is generally high, their specificity, particularly in the case of the liquid phase blocking ELISA (LPBE), is relatively low. This presents difficulties when it comes to proving freedom from infection. These tests are also effective for monitoring serological responses to vaccination where it is certain that the animals concerned have not been infected. The net specificity of serological screening with ELISAs can be improved by retesting positive sera using the virus neutralisation test (VNT). Precise values for sensitivity and specificity of these tests are not available and, in any case, are likely to vary slightly between laboratories.

Any animal whose serum is positive by the VNT should be tested additionally for evidence of infection using either serological tests for antibodies to NSPs and/or by collection of oesophageal pharyngeal material (probang testing) for virus detection on cell cultures or by PCR. Ideally, fresh serum should be collected from the animal(s) concerned because repeated freezing and thawing of stored sera tends to damage immunoglobulins.

Animals that have been vaccinated will have antibodies to the structural proteins of FMD virus, and some may have antibodies to the NSPs, depending on the number of times they have been vaccinated, and the amount of the NSPs present in the vaccine used. However, animals that have recovered from infection with FMD virus will have high levels of antibody to the NSPs. There are eight NSPs associated with the replication of FMD virus, namely L, 2A, 2B, 2C, 3A, 3B, 3C and 3D, and antibodies can be found to all of these in most recovered animals. Some do not persist for more than a few months, and some animals may fail to produce detectable levels to all NSPs. ELISAs have been developed to detect 2C, 3B or 3ABC antibodies, the former being detectable for up to one year after infection, and the latter for up to 2 years. A western blot technique (EITB) may also be used to detect the NSP antibodies to 2C, 3ABC, 3A, 3B and 3D; it is particularly specific and sensitive in identifying previously infected animals. All these tests have been extensively used in cattle. Similar testing in other species is on going.
Appendix VIII (contd)

There is the option to use the NSP antibody test together with tests for detection of antibody to structural viral proteins, particularly in areas where vaccination has been used and virus activity is suspected. Titres higher than would be expected from vaccination alone may suggest FMDV infection and this can be confirmed by testing for the presence of antibodies to the NSPs.

As indicated above, the diagnostic sensitivity of tests used influences the numbers of animals that need to be sampled in a survey to provide evidence of absence of infection. The diagnostic specificity of the test influences the proportion and number of positive results to be expected in the absence or presence of infection, and therefore the selection and use of confirmatory tests. Results of surveys which indicate a significantly higher proportion of positive test results in comparison with that expected from the estimate of the false positive rate derived from the diagnostic specificity (i.e. 100 minus diagnostic specificity) may be interpreted as evidence of infection in the population. A confirmatory test of high specificity, and where appropriate other investigations, should be conducted to prove or refute the possibility of infection.

Figure 1 provides a flowchart of the test protocol that could be used to test the samples collected in a serological survey. If the population being tested has not been previously vaccinated against FMD, the serum samples can be tested using ELISAs based on structural proteins. Sera positive on the test used should be retested using the VNT, which increases the net specificity. In addition, or in place of the VNT if the laboratory is not able to manipulate live FMDV, the positive sera may be retested using an NSP antibody test, such as the 3B, 3ABC or EITB. A positive VNT or NSP test would suggest that live virus had been circulating, and would require further investigation of the herd or flock to confirm or refute the possibility. Further investigation should include serum testing of the whole herd or flock from which the positive samples were obtained. NSP tests should be used for testing sera from vaccinated herds or flocks, as such sera will be positive by VNT. 3ABC or 3B positive samples may be repeat tested using the EITB for confirmation. All animals from the unit from which positive samples are obtained should be re-tested for antibodies to NSPs.

The sensitivity and specificity of the NSP tests currently available are not fully documented, in particular for species other than cattle. Member Countries submitting to the OIE data derived from commercial or other NSP tests should provide information on the characteristics of the test being used.

Animals infected with FMDV produce antibodies to both the structural proteins (SP) and the nonstructural proteins (NSP) of the virus. Tests for SP antibodies to include SP-ELISAs and the virus neutralisation test (VNT). The SP tests are serotype specific and for optimal sensitivity should utilise an antigen or virus closely related to the field strain against which antibodies are being sought. Tests for NSP antibodies include NSP I-ELISA 3ABC and the electro-immunotransfer blotting technique (EITB) as recommended in the Terrestrial Manual or equivalent validated tests. In contrast to SP tests, NSP tests can detect antibodies to all serotypes of FMD virus. Animals vaccinated and subsequently infected with FMD virus develop antibodies to NSPs, but in some, the titre may be lower than that found in infected animals that have not been vaccinated. Both the NSP I-ELISA 3ABC and EITB tests have been extensively used in cattle. Validation in other species is ongoing. Vaccines used should comply with the standards of the Terrestrial Manual insofar as purity is concerned to avoid interference with NSP antibody testing.

Serological testing is a suitable tool for FMD surveillance. The choice of a serosurveillance system will depend on, amongst other things, the vaccination status of the country. A country which is free from FMD without vaccination, may choose serosurveillance of high-risk subpopulations (e.g. based on geographical risk for exposure to FMDV). SP tests may be used in such situations for screening sera for evidence of FMDV infection/circulation if a particular virus of serious threat has been identified and is well characterised. In other cases, NSP testing is recommended in order to cover a broader range of strains and even serotypes. In both cases, serological testing can provide additional support to clinical surveillance. Regardless of whether SP or NSP tests are used in countries that do not vaccinate, a diagnostic follow-up protocol should be in place to resolve any presumptive positive serological test results.
In areas where animals have been vaccinated, SP antibody tests may be used to monitor the serological response to the vaccination. However, NSP antibody tests should be used to monitor for FMDV infection/circulation. NSP-ELISAs may be used for screening sera for evidence of infection/circulation irrespective of the vaccination status of the animal. All herds with seropositive reactors should be investigated. Epidemiological and supplementary laboratory investigation results should document the status of FMDV infection/circulation for each positive herd. Tests used for confirmation should be of high diagnostic specificity to eliminate as many false positive screening test reactors as possible. The diagnostic sensitivity of the confirmatory test should approach that of the screening test. The EITB or another OIE-accepted test should be used for confirmation.

Information should be provided on the protocols, reagents, performance characteristics and validation of all tests used.

1) The follow up procedure in case of positive test results if no vaccination is used in order to establish or re-establish FMD free status without vaccination

Any positive test result (regardless of whether SP or NSP tests were used) should be followed up immediately using appropriate clinical, epidemiological, serological and where possible virological investigations of the reactor animal at hand, of susceptible animals of the same epidemiological unit and of susceptible animals that have been in contact or otherwise epidemiologically associated with the reactor animal. If the follow up investigations provide no evidence for FMDV infection, the reactor animal shall be classified as FMD negative. In all other cases, including the absence of such follow up investigations, the reactor animal should be classified as FMD positive.

2) The follow up procedure in case of positive test results if vaccination is used in order to establish or re-establish FMD free status with vaccination

In case of vaccinated populations one has to exclude that positive test results are indicative of virus circulation. To this end the following procedure should be followed in the investigation of positive serological test results derived from surveillance conducted on FMD vaccinated populations.

The investigation should examine all evidence that might confirm or refute the hypothesis that the positive results to the serological tests employed in the initial survey were not due to virus circulation. All the epidemiological information should be substantiated and the results should be collated in the final report.

It is suggested that in the primary sampling units where at least one animal reacts positive to the NSP test, the following strategy(ies) should be applied:

a) Following clinical examination, a second serum sample should be taken from the animals tested in the initial survey after an adequate interval of time has lapsed, on the condition that they are individually identified, accessible and have not been vaccinated during this period. Antibody titres against NSP at the time of retest should be statistically either equal to or lower than those observed in the initial test if virus is not circulating.

The animals sampled should remain in the holding pending test results and should be clearly identifiable. If the three conditions for retesting mentioned above cannot be met, a new serological survey should be carried out in the holding after an adequate period of time, repeating the application of the primary survey design and ensuring that all animals tested are individually identified. These animals should remain in the holding and should not be vaccinated, so that they can be retested after an adequate period of time.
Appendix VIII (contd)

b) Following clinical examination, serum samples should be collected from representative numbers of cattle that were in physical contact with the primary sampling unit. The magnitude and prevalence of antibody reactivity observed should not differ in a statistically significant manner from that of the primary sample if virus is not circulating.

c) Following clinical examination, epidemiologically linked herds should be serologically tested and satisfactory results should be achieved if virus is not circulating.

d) Sentinel animals can also be used. These can be young, unvaccinated animals or animals in which maternally conferred immunity has lapsed and belonging to the same species resident within the positive initial sampling units. They should be serologically negative if virus is not circulating. If other susceptible, unvaccinated ruminants (sheep, goats) are present, they could act as sentinels to provide additional serological evidence.

Laboratory results should be examined in the context of the epidemiological situation. Corollary information needed to complement the serological survey and assess the possibility of viral circulation includes but is not limited to:

– characterization of the existing production systems;
– results of clinical surveillance of the suspects and their cohorts;
– quantification of vaccinations performed on the affected sites;
– sanitary protocol and history of the establishments with positive reactors;
– control of animal identification and movements;
– other parameters of regional significance in historic FMDV transmission.

The entire investigative process should be documented as standard operating procedure within the surveillance programme.
Figure 1. Schematic representation of laboratory tests for determining evidence of FMDV infection through or following serological surveys

Susceptible Population

- Unvaccinated

- Vaccinated

LPBE or SPCE

NSP

LPBE or SPCE

3ABC
(Optional See Notes)

ELISA

Follow-up testing

- NSP

VNT

3ABC

Follow-up testing

ELISA

3ABC

EITB

- 3ABC

EITB

VNT

The above diagram indicates the tests which are recommended for use in the investigation of sampling units in which a positive test result has been obtained.

When feasible, detection of virus in OP fluid can also be used as a complementary test on units in which positive NSP test result has been obtained.
Appendix VIII (contd)

Figure 1 Schematic representation of laboratory tests for determining evidence of FMDV infection through or following serological surveys

Key:
ELISA Enzyme-linked immunosorbent assay
VNT Virus neutralisation test
NSP Nonstructural protein(s) of foot and mouth disease virus (FMDV)
3ABC NSP antibody test
EITB Electro-immuno transfer blotting technique (Western blot for NSP antibodies of FMDV)
OP Oesophageal–pharyngeal sample
SP Structural protein test
S No evidence of FMDV
CHAPTER 2.2.13.

BLUETONGUE

Article 2.2.13.1.

For the purposes of the Terrestrial Code, the infective period for bluetongue virus (BTV) shall be 100 60 days.

The global BTV distribution historically has been shown to be currently between latitudes of 50°40’N and 35°S but is known to be expanding in the northern hemisphere.

In the absence of clinical disease in a country or zone within this part of the world, its BTV status should be determined by an ongoing surveillance and monitoring programme (in accordance with Chapter 1.3.6 Appendix 3.8.1) designed in accordance with the epidemiology of the disease, i.e. focusing on climatic and geographical factors, the biology and likely competence of Culicoides and/or serology of susceptible animals. The programme may need to be adapted to target parts of the country or zone at a higher risk due to historical, geographical and climatic factors, ruminant population data and Culicoides ecology, or proximity to enzootic or incursional zones as described in Appendix 3.8.1. Random and targeted serological surveillance should provide at least a 95% level of confidence of detecting an annual seroconversion incidence of 2% in cattle (or other ruminant species if sufficient cattle are not available).

All countries or zones located outside this part of the world but adjacent to a country or zone not having free status should be subjected to similar surveillance. The surveillance programme should be carried out over a distance of at least 100 kilometres from the border with that country or zone, but a lesser distance could be acceptable if there are relevant ecological or geographical features likely to interrupt the transmission of BTV.

Standards for diagnostic tests and vaccines are described in the Terrestrial Manual.

Article 2.2.13.2.

BTV free country or zone

1) A country or a zone may be considered free from BTV when bluetongue is notifiable in the whole country and either:

 a) the country or zone lies wholly north of 50°40’N or south of 35°S, and is not adjacent to a country or zone not having a free status; or

 b) a surveillance and monitoring programme as described in Chapter 1.3.6 Appendix 3.8.1 Article 2.2.13.1. has demonstrated no evidence of BTV in the country or zone during the past 2 years, nor have any ruminants been vaccinated against bluetongue in the country or zone during the past 12 months; or

 c) a surveillance and monitoring programme has demonstrated no evidence of Culicoides likely to be competent BTV vectors in the country or zone.

For maintenance of the free status, the provisions of the last paragraph of Article 2.1.9.1. may need to be complied with on a continuous basis according to the geographical location of the country or zone.

2) A BTV free country or zone in which surveillance and monitoring has found no evidence that Culicoides likely to be competent BTV vectors are present will not lose its free status through the importation of vaccinated, seropositive or infective animals, or semen or embryos/ova from infected countries or zones.
3) A BTV free country or zone in which surveillance and monitoring has found evidence that *Culicoides* likely to be competent BTV vectors are present will not lose its free status through the importation of vaccinated or seropositive animals from infected countries or zones, provided:

a) the animals have been vaccinated in accordance with the *Terrestrial Manual* at least 30 to 60 days prior to dispatch with a vaccine which covers all serotypes whose presence in the source population has been demonstrated through a surveillance and monitoring programme as described in Chapter 1.3.6 Appendix 3.8.1, and that the animals are identified in the accompanying certification as having been vaccinated; or

b) the animals are not vaccinated, and a surveillance and monitoring programme as described in Chapter 1.3.6 Appendix 3.8.1 has been in place in the source population for a period of 60 days immediately prior to dispatch, and no evidence of BTV transmission has been detected.

4) A BTV free country or zone adjacent to an infected country or zone should include a surveillance zone in which surveillance is conducted as described in Appendix 3.8.1 Article 2.1.9.1. Animals within this surveillance zone must be subjected to continuing surveillance. The boundaries of this zone must be clearly defined, and must take account of geographical and epidemiological factors that are relevant to BTV transmission.

BTV seasonally free zone

A BTV seasonally free zone is a part of an infected country or zone for which for part of a year, surveillance and monitoring demonstrate no evidence either of BTV transmission or of adult *Culicoides* likely to be competent BTV vectors.

For the application of Articles 2.2.13.7., 2.2.13.10. and 2.2.13.14., the seasonally free period is taken to commence the day following the last evidence of BTV transmission (as demonstrated by the surveillance and monitoring programme), or of the cessation of activity of adult *Culicoides* likely to be competent BTV vectors.

For the application of Articles 2.2.13.7., 2.2.13.10. and 2.2.13.14., the seasonally free period is taken to conclude either:

1) at least 28 days before the earliest date that historical data show bluetongue virus activity has recommenced; or

2) immediately if current climatic data or data from a surveillance and monitoring programme indicate an earlier resurgence of activity of adult *Culicoides* likely to be competent BTV vectors.

A BTV seasonally free zone in which surveillance and monitoring has found no evidence that *Culicoides* likely to be competent BTV vectors are present will not lose its free status through the importation of vaccinated, seropositive or infective animals, or semen or embryos/ova from infected countries or zones.

BTV infected country or zone

A BTV infected country or zone is a clearly defined area where evidence of BTV has been reported during the past 2 years.
Appendix IX (contd)

Article 2.2.13.5.

Veterinary Administrations of countries shall consider whether there is a risk with regard to BTV infection in accepting importation or transit through their territory, from other countries, of the following commodities:

1) ruminants and other BTV susceptible herbivores;
2) semen of these species;
3) embryos/ova of these species;
4) pathological material and biological products (from these species) (see Chapter 1.4.6. and Section 1.5.).

Other commodities should be considered as not having the potential to spread BTV when they are the subject of international trade.

Article 2.2.13.6.

When importing from BTV free countries or zones, Veterinary Administrations should require:

for ruminants and other BTV susceptible herbivores

the presentation of an international veterinary certificate attesting that:

1) the animals were kept in a BTV free country or zone since birth or for at least 100 days prior to shipment; or
2) the animals were kept in a BTV free country or zone for at least 28 days, then were subjected, with negative results, to a serological test to detect antibody to the BTV group according to the Terrestrial Manual, such as the BT competition ELISA or the BT AGID test, and remained in the BTV free country or zone until shipment; or
3) the animals were kept in a BTV free country or zone for at least 7 days, then were subjected, with negative results, to an agent identification test according to the Terrestrial Manual a BTV isolation test or polymerase chain reaction test on a blood sample, and remained in the BTV free country or zone until shipment; or
4) the animals:
 a) were kept in a BTV free country or zone for at least 7 days;
 b) were vaccinated in accordance with the Terrestrial Manual 60 days before introduction into the free country or zone against all serotypes whose presence in the source population has been demonstrated through a surveillance and monitoring programme as described in Appendix 3.8.1.;
 c) were identified as having been vaccinated; and
 d) remained in the BTV free country or zone until shipment;

OIE Terrestrial Animal Health Standards Commission/January 2005
Appendix IX (contd)

AND

5) if the animals were exported from a free zone, either:
 a) did not transit through an infected zone during transportation to the place of shipment; or
 b) were protected from attack from Culicoides likely to be competent BTV vectors at all times when transiting through an infected zone; or
 c) had been vaccinated in accordance with point 4) above.

Article 2.2.13.7.

When importing from BTV seasonally free zones, Veterinary Administrations should require:

for ruminants and other BTV susceptible herbivores

the presentation of an international veterinary certificate attesting that the animals:

1) were kept during the seasonally free period in a BTV seasonally free zone for at least 60 days prior to shipment; or

2) were kept during the BTV seasonally free period in a BTV seasonally free zone for at least 28 days prior to shipment, and were subjected during the residence period in the zone to a serological test to detect antibody to the BTV group, according to the Terrestrial Manual such as the BT-competition ELISA or the BT AGID test, with negative results on two occasions, with an interval of not less than 7 days between each test, the first test being carried out at least 21 days after the commencement of the residence period; or

3) were kept during the BTV seasonally free period in a BTV seasonally free zone for at least 14 days prior to shipment, and were subjected during the residence period in the zone to an agent identification test according to the Terrestrial Manual to a BTV isolation test or polymerase chain reaction test, with negative results, on blood samples taken on two occasions, with an interval of not less than 7 days between each test, the first test being carried out at least 7 days after the commencement of the residence period; or

4) were kept during the seasonally free period in a BTV seasonally free zone, and were vaccinated in accordance with the Terrestrial Manual against all serotypes whose presence in the source population has been demonstrated through a surveillance and monitoring programme as described in Appendix 3.8.1, were identified as having been vaccinated and remained in the BTV free country or zone until shipment;

AND

5) if the animals were exported from a free zone, either:
 a) did not transit through an infected zone during transportation to the place of shipment, or
 b) were protected from attack from Culicoides likely to be competent BTV vectors at all times when transiting through an infected zone, or
 c) were vaccinated in accordance with point 4) above.
Appendix IX (contd)

Article 2.2.13.8.

When importing from BTV infected countries or zones, Veterinary Administrations should require:

for ruminants and other BTV susceptible herbivores

the presentation of an international veterinary certificate attesting that the animals:

1) were protected from attack from Culicoides likely to be competent BTV vectors for at least 60 days prior to shipment; or

2) were protected from attack from Culicoides likely to be competent BTV vectors for at least 28 days prior to shipment, and were subjected during that period to a serological test according to the Terrestrial Manual to detect antibody to the BTV group, such as the BT competition ELISA or the BT AGID test, with negative results on two occasions, with an interval of not less than 7 days between each test, the first test being carried out at least 21 days after introduction into the quarantine station; or

3) were protected from attack from Culicoides likely to be competent BTV vectors for at least 14 days prior to shipment, and were subject to an agent identification test according to the Terrestrial Manual a BTV isolation test or polymerase chain reaction test, with negative results, on blood samples taken on two occasions, with an interval of not less than 7 days between each test, the first test being carried out at least 7 days after introduction into the quarantine station; or

4) were vaccinated in accordance with the Terrestrial Manual at least 30 days before shipment, against all serotypes whose presence in the source population has been demonstrated through a surveillance and monitoring programme as described in Appendix 3.8.1, and were identified in the accompanying certification as having been vaccinated; or

5) are not vaccinated, a surveillance and monitoring programme as described in Appendix 3.8.1. has been in place in the source population for a period of 60 days immediately prior to shipment, and no evidence of BTV transmission has been detected;

AND

6) were protected from attack from Culicoides likely to be competent BTV vectors during transportation to the place of shipment; or

7) were vaccinated 30 days before shipment or had antibodies against all serotypes whose presence in the zones of transit has been demonstrated through a surveillance and monitoring programme as described in Appendix 3.8.1.

Article 2.2.13.9.

When importing from BTV free countries or zones, Veterinary Administrations should require:

for semen of ruminants and other BTV susceptible herbivores

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) were kept in a BTV free country or zone for at least 60 days before commencement of, and during, collection of the semen; or
 b) were subjected to a serological test according to the Terrestrial Manual to detect antibody to the BTV group, such as the BT competition ELISA or the BT AGID test, between 28 and 60 days after the last collection for this consignment, with negative results; or
Appendix IX (contd)

c) were subjected to an agent identification test according to the Terrestrial Manual a virus isolation test or polymerase chain reaction (PCR) test on blood samples collected at commencement and conclusion of, and at least every 7 days (virus isolation test) or at least every 28 days (PCR test) during, semen collection for this consignment, with negative results;

2) the semen was collected, processed and stored in conformity with the provisions of either Appendix 3.2.1. or Appendix 3.2.2.

Article 2.2.13.10.

When importing from BTV seasonally free zones, Veterinary Administrations should require:

for semen of ruminants and other BTV susceptible herbivores

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) were kept during the BTV seasonally free period in a seasonally free zone for at least \(60\) days before commencement of, and during, collection of the semen; or
 b) were subjected to a serological test according to the Terrestrial Manual to detect antibody to the BTV group such as the BT competition ELISA or the BT AGID test, with negative results, at least every 60 days throughout the collection period and between \(28\) \(60\) and 60 days after the final collection for this consignment; or
 c) were subjected to an agent identification test according to the Terrestrial Manual a virus isolation test or polymerase chain reaction (PCR) test on blood samples collected at commencement and conclusion of, and at least every 7 days (virus isolation test) or at least every 28 days (PCR test) during, semen collection for this consignment, with negative results;

2) the semen was collected, processed and stored in conformity with the provisions of either Appendix 3.2.1. or Appendix 3.2.2.

Article 2.2.13.11.

When importing from BTV infected countries or zones, Veterinary Administrations should require:

for semen of ruminants and other BTV susceptible herbivores

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) were protected from attack from Culicoides likely to be competent BTV vectors for at least \(60\) days before commencement of, and during, collection of the semen; or
 b) were subjected to a serological test according to the Terrestrial Manual to detect antibody to the BTV group such as the BT competition ELISA or the BT AGID test, with negative results, at least every 60 days throughout the collection period and between \(28\) \(60\) and 60 days after the final collection for this consignment; or
 c) were subjected to an agent identification test according to the Terrestrial Manual a virus isolation test or polymerase chain reaction (PCR) test on blood samples collected at commencement and conclusion of, and at least every 7 days (virus isolation test) or at least every 28 days (PCR test) during, semen collection for this consignment, with negative results;
2) the semen was collected, processed and stored in conformity with the provisions of either Appendix 3.2.1. or Appendix 3.2.2.

Article 2.2.13.12.

Regardless of the bluetongue status of the exporting country, Veterinary Administrations of importing countries should require:

for in vivo derived bovine embryos/oocytes

the presentation of an international veterinary certificate attesting that the embryos/oocytes were collected, processed and stored in conformity with the provisions of Appendix 3.3.1. or Appendix 3.3.3., as relevant.

Article 2.2.13.13.

When importing from BTV free countries or zones, Veterinary Administrations should require:

for in vivo derived embryos of ruminants (other than bovines) and other BTV susceptible herbivores

the presentation of an international veterinary certificate attesting that:

1) the donor females:
 a) were kept in a BTV free country or zone for at least the 60 100 days prior to, and at the time of, collection of the embryos; or
 b) were subjected to a serological test according to the Terrestrial Manual to detect antibody to the BTV group, such as the BT competition ELISA or the BT AGID test, between 28 21 and 60 days after collection, with negative results; or
 c) were subjected to an agent identification test according to the Terrestrial Manual a BTV isolation test or polymerase chain reaction test on a blood sample taken on the day of collection, with negative results;

2) the embryos were collected, processed and stored in conformity with the provisions of Appendix 3.3.1.

Article 2.2.13.14.

When importing from BTV seasonally free zones, Veterinary Administrations should require:

for in vivo derived embryos/oocytes of ruminants (other than bovines) and other BTV susceptible herbivores and for in vitro produced bovine embryos

the presentation of an international veterinary certificate attesting that:

1) the donor females:
 a) were kept during the seasonally free period in a seasonally free zone for at least 60 100 days before commencement of, and during, collection of the embryos/oocytes; or
 b) were subjected to a serological test according to the Terrestrial Manual to detect antibody to the BTV group, such as the BT competition ELISA or the BT AGID test, between 28 21 and 60 days after collection, with negative results; or
 c) were subjected to an agent identification test according to the Terrestrial Manual a BTV isolation test or polymerase chain reaction test on a blood sample taken on the day of collection, with negative results;

2) the embryos/oocytes were collected, processed and stored in conformity with the provisions of Appendix 3.3.1.
Appendix IX (contd)

Article 2.2.13.15.

When importing from BTV infected countries or zones, Veterinary Administrations should require:
for in vivo derived embryos/oocytes of ruminants (other than bovines) and other BTV susceptible herbivores and for in vitro produced bovine embryos

the presentation of an international veterinary certificate attesting that:

1) the donor females:
 a) were protected from attack from Culicoides likely to be competent BTV vectors for at least 60 days before commencement of, and during, collection of the embryos/oocytes; or
 b) were subjected to a serological test according to the Terrestrial Manual to detect antibody to the BTV group, such as the BT competition ELISA or the BT AGID test, between 28 and 60 days after collection, with negative results; or
 c) were subjected to an agent identification test according to the Terrestrial Manual a BTV isolation test or polymerase chain reaction test on a blood sample taken on the day of collection, with negative results;

2) the embryos/oocytes were collected, processed and stored in conformity with the provisions of Appendix 3.3.1.

Article 2.2.13.16.

Protecting animals from Culicoides attack

When transporting animals through BTV infected countries or zones, Veterinary Administrations should require strategies to protect animals from attack from Culicoides likely to be competent BTV vectors during transport, taking into account the local ecology of the vector.

Strategies to protect animals from attack from Culicoides likely to be competent BTV vectors during transport through an infected country or zone should take into account the local ecology of the vector.

Potential risk management strategies include:

1) treating animals with chemical repellents prior to and during transportation;

2) loading, transporting and unloading animals at times of low vector activity i.e. bright sunshine, low temperature;

3) ensuring vehicles do not stop en route during dawn or dusk, or overnight, unless the animals are held behind insect proof netting;

4) darkening the interior of the vehicle, for example by covering the roof and/or sides of vehicles with shadecloth;

5) monitoring for vectors at common stopping and offloading points to gain information on seasonal variations;

6) using historical, ongoing and/or BTV modeling information to identify low risk ports and transport routes.

OIE Terrestrial Animal Health Standards Commission/January 2005
CHAPTER 2.3.3.

BOVINE TUBERCULOSIS

Article 2.3.3.1.

The recommendations in this Chapter are intended to manage the human and animal health risks associated with *Mycobacterium bovis* (*M. bovis*) infection in cattle (*Bos taurus*, *Bos indicus* and *Bos grunniens*) and buffalo (*Bubalus bubalis*).

When authorising import or transit of the following commodities, Veterinary Administrations should comply with the requirements prescribed in this Chapter relevant to the status of bovine tuberculosis in the exporting country, zone or compartment:

1) **live animals**;

2) **semen, ova and in vivo derived embryos** collected and handled in accordance with the recommendations of the International Embryo Transfer Society;

3) **meat and meat products**;

4) **milk and milk products**.

Standards for diagnostic tests are described in the *Terrestrial Manual*.

Article 2.3.3.2.

Country, or zone officially or compartment free from bovine tuberculosis

To qualify as officially free from bovine tuberculosis, a country, or zone shall or compartment should satisfy the following requirements:

1) bovine tuberculosis is a notifiable disease in the country;

2) 99.8% of the herds in the considered geographical area have been officially free from bovine tuberculosis for at least the past 3 years as disclosed by periodic testing of all cattle in the area to determine the absence of bovine tuberculosis (periodic testing of all cattle is not required in an area where a surveillance programme as described in point 1) below reveals that at least 99.9% of the cattle have been in herds officially free from tuberculosis for at least 6 years);

2) regular and periodic testing of all cattle herds has shown that at least 99.8% of the herds and 99.9% of the animals in the country, zone or compartment have been found free from bovine tuberculosis for 3 consecutive years;

3) a surveillance programme should be in place to ensure the discovery of bovine tuberculosis in the country, zone or compartment, through monitoring at slaughter based on the inspection described in Article 2.3.3.8. In addition, a prescribed test can also be used for surveillance purposes. The Veterinary Administration should be able to trace and test the herd of origin of any reactor to a prescribed test or of any animal which discloses gross pathological lesions of tuberculosis in an abattoir or elsewhere disclosed after removal from the considered territory;
Appendix X (contd)

3.4) cattle introduced into a country or zone officially or compartment free from bovine tuberculosis must be accompanied by a certificate from an Official Veterinarian attesting that they come from a herd of cattle officially free from bovine tuberculosis or from a country or zone, compartment or herd officially free from bovine tuberculosis;

4. a country or zone officially free from bovine tuberculosis must have a Veterinary Administration which should be able to trace and test the herd of origin of any reactor to a tuberculin test disclosed after removal from the considered territory. Also animals which disclosed gross pathological lesions of tuberculosis in an abattoir or elsewhere. In addition, such a country or zone must have in place a surveillance programme to ensure the discovery of bovine tuberculosis should the disease be present in the country or zone, through slaughter monitoring and/or tuberculin testing.

Article 2.3.3.3.

Herd officially free from bovine tuberculosis

To qualify as officially free from bovine tuberculosis, a herd of cattle should satisfy the following requirements:

1) the herd is in a country or zone officially or compartment free from bovine tuberculosis and is certified free by the Veterinary Administration or

2) all cattle in the herd:
 a) show no clinical sign of bovine tuberculosis;
 b) over 6 weeks of age, have shown a negative result to at least two tuberculin tests carried out at an interval of 6 months, the first test being performed at 6 months following the slaughter of the last affected animal;
 c) showed a negative result to an annual tuberculin test to ensure the continuing absence of bovine tuberculosis;

3) all cattle introduced into the herd come from a) must be accompanied by a certificate from an Official Veterinarian attesting that they were subjected to a tuberculin test during the 30 days prior to entry into the herd, with negative results; or a herd free from bovine tuberculosis. This condition may be waived for animals which have been isolated and which, prior to entry into the herd, were subjected to at least two tuberculin tests carried out at a 6-month interval with negative results.
 b) were kept in a herd officially free from bovine tuberculosis.

Article 2.3.3.4.

Veterinary Administrations of importing countries should require:

for cattle for breeding or rearing

the presentation of an international veterinary certificate attesting that the animals:

1) showed no clinical sign of bovine tuberculosis on the day of shipment;

2) originate from a herd free from bovine tuberculosis that is in a country, zone or compartment free from bovine tuberculosis; or
Appendix X (contd)

3) were subjected to the tuberculin test for bovine tuberculosis with negative results during the 30 days prior to shipment and come from a herd officially free from bovine tuberculosis; or

4) were isolated for the 3 months prior to shipment and were subjected to the tuberculin test for bovine tuberculosis with negative results on two occasions, with an interval of not less than 60 days between each test.

4. were subjected to the tuberculin test for bovine tuberculosis with negative results during the 30 days prior to shipment and come from a country or zone officially free from bovine tuberculosis.

Article 2.3.3.5.

Veterinary Administrations of importing countries should require:

for cattle for slaughter

the presentation of an international veterinary certificate attesting that the animals:

1) originated from a herd free from bovine tuberculosis or were subjected to a tuberculin test for bovine tuberculosis with negative results during the 30 days prior to shipment;

2) were not being eliminated as part of an eradication programme against bovine tuberculosis, kept in a herd officially free from bovine tuberculosis; or

3) were kept in a country or zone officially free from bovine tuberculosis.

This certificate may be complemented in paragraphs 2) and 3) by:

4) are not being eliminated as part of an eradication programme against bovine tuberculosis.

Article 2.3.3.6.

Veterinary Administrations of importing countries should require:

for wild bovines destined for zoological gardens

the presentation of an international veterinary certificate attesting that the animals were subjected to a tuberculin test for bovine tuberculosis with negative results during the 30 days prior to shipment.

Article 2.3.3.7.

Veterinary Administrations of importing countries should require:

for pigs for breeding or rearing

the presentation of an international veterinary certificate attesting that the animals:

1) showed no clinical sign of bovine tuberculosis on the day of shipment; and/or

2) were subjected to a tuberculin test for bovine tuberculosis with negative results, the test being performed on the posterior aspect of the base of the ear (the result should be read after 48 hours); and/or

3) were kept in a country, zone or herd officially free from bovine tuberculosis.
Appendix X (contd)

Article 2.3.3.8.

Veterinary Administrations of importing countries should require:

for pigs for slaughter

the presentation of an international veterinary certificate attesting that the animals:

1) were kept in a country, zone or herd officially free from bovine tuberculosis;
2) are not being eliminated as part of an eradication programme against bovine tuberculosis.

Article 2.3.3.9.

Veterinary Administrations of importing countries should require:

for semen of cattle and pigs

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) showed no clinical sign of bovine tuberculosis on the day of collection of the semen;
 b) were isolated in the establishment of origin during the 3 months prior to collection and were subjected to a tuberculin test for bovine tuberculosis with negative results on two occasions, with an interval of not less than 60 days between each test; or
 c) were kept in the exporting country for the 30 days prior to collection, in an establishment or artificial insemination centre where all animals are officially free from bovine tuberculosis;
 b) were kept in an artificial insemination centre free from bovine tuberculosis in a country, zone or compartment free from bovine tuberculosis and which only accepts animals from free herds in a free country, zone or compartment; or
 c) showed negative results to tuberculin tests carried out at an interval of 6 months and were kept in an artificial insemination centre free from bovine tuberculosis;
2) the semen was collected, processed and stored in conformity with the provisions of either Appendix 3.2.1. or Appendix 3.2.3.

Article 2.3.3.9.7.
(under study)

Veterinary Administrations of importing countries should require:

for embryos/ova of cattle and pigs

the presentation of an international veterinary certificate attesting that:

1) the donor females:
 a) and all other susceptible animals in the herd of origin showed no clinical sign of bovine tuberculosis during the 24 hours prior to departure to the collection centre;
2) were kept in a herd officially free from bovine tuberculosis;
Appendix X (contd)

b) originated from a herd free from bovine tuberculosis in a country, zone or compartment free from bovine tuberculosis; or

c) were kept in a herd officially free from bovine tuberculosis, were isolated in the establishment of origin for the 30 days prior to departure to the collection centre and were subjected to a tuberculin test for bovine tuberculosis with negative results;

2) the embryos/ova were collected, processed and stored in conformity with the provisions of Appendix 3.3.1., Appendix 3.3.2. or Appendix 3.3.3.

Veterinary Administrations of importing countries should require:

for fresh meat of cattle and pigs

the presentation of an international veterinary certificate attesting that the entire consignment of meat comes from animals which have been subjected to ante-mortem and post-mortem inspections for bovine tuberculosis carried out by the Veterinary Services in an approved abattoir with favourable results.

Article 2.3.3.9.

Veterinary Administrations of importing countries should require:

for meat products

the presentation of an international veterinary certificate attesting that:

1) the meat is derived from animals satisfying conditions mentioned in Article 2.3.3.8.;

2) the necessary precautions were taken after processing to avoid contact of the entire meat products with any potential source of M. bovis.

Article 2.3.3.10.

Veterinary Administrations of importing countries should require:

for milk and milk products

the presentation of an international veterinary certificate attesting that the consignment:

1) has been derived from animals in a herd free from bovine tuberculosis; or

2) was subjected to pasteurisation or a combination of control measures with equivalent performance in reducing M. bovis in raw milk as described in the Codex Alimentarius Code of Hygienic Practice for Milk and Milk Products.
PROPOSED THREE CATEGORY VERSION

BOVINE SPONGIFORM ENCEPHALOPATHY

Article 1

The recommendations in this Chapter are intended to manage the human and animal health risks associated with the presence of the bovine spongiform encephalopathy (BSE) agent in cattle (*Bos taurus* and *B. indicus*) only.

1) When authorising import or transit of the following commodities and any products made from these commodities and containing no other tissues from cattle, *Veterinary Administrations* should not require any BSE related conditions, regardless of the BSE risk status of the cattle population of the exporting country, zone or compartment:

 a) milk and milk products;
 b) semen and *in vivo* derived cattle embryos collected and handled in accordance with the recommendations of the International Embryo Transfer Society;
 c) hides and skins (excluding hides and skins from the head);
 d) gelatin and collagen prepared exclusively from hides and skins (excluding hides and skins from the head);
 e) protein-free tallow (maximum level of insoluble impurities of 0.15% in weight) and derivatives made from this tallow;
 f) dicalcium phosphate (with no trace of protein or fat);
 g) deboned skeletal muscle meat (excluding mechanically separated meat) from cattle which were not subjected to a stunning process, prior to slaughter, with a device injecting compressed air or gas into the cranial cavity, or to a pithing process;
 h) blood and blood by-products, from cattle which were not subjected to a stunning process, prior to slaughter, with a device injecting compressed air or gas into the cranial cavity, or to a pithing process.

2) When authorising import or transit of *other the following commodities* listed in this chapter, *Veterinary Administrations* should require the conditions prescribed in this Chapter relevant to the BSE risk status of the cattle population of the exporting country, zone or compartment.

 a) cattle;
 b) fresh meat and meat products;
 c) gelatin and collagen prepared from bones or from hides and skins from the head;
 d) tallow and tallow derivatives, other than protein-free tallow as defined above;
 e) dicalcium phosphate, other than dicalcium phosphate with no trace of protein or fat.

Standards for diagnostic tests are described in the *Terrestrial Manual*.
Appendix XI (contd)

Article 2

The BSE risk status of the cattle population of a country, zone or compartment can only should be determined on the basis of the following criteria:

1) the outcome of a risk assessment (which is reviewed annually), based on Section 1.3, identifying all potential factors for BSE occurrence and their historic perspective:

 a) Release assessment

 Release assessment consists of assessing the likelihood that a transmissible spongiform encephalopathy (TSE) agent has been introduced into the cattle population from a pre-existing TSE in the indigenous ruminant population or via the following commodities potentially contaminated with a TSE agent, through a consideration of the following:

 i) the presence or absence of animal TSE agents in the country or zone/compartment and, if present, their prevalence based on the outcomes of surveillance;

 ii) meat-and-bone meal or greaves from the indigenous ruminant population;

 iii) imported meat-and-bone meal or greaves;

 iv) imported live animals;

 v) imported animal feed and feed ingredients;

 vi) imported products of ruminant origin for human consumption, which may have contained tissues listed in Article 13 and may have been fed to cattle;

 vii) imported products of ruminant origin for in vivo use in cattle.

 Surveillance and other epidemiological investigations (especially surveillance for BSE conducted on the cattle population) relevant to the above should be taken into account in carrying out the assessment.

 b) Exposure assessment

 If the release assessment identifies a risk factor, an exposure assessment should be conducted, consisting of assessing the likelihood of exposure of the BSE agent to cattle, through a consideration of the following:

 i) recycling and amplification of the BSE agent through consumption by cattle of meat-and-bone meal or greaves of ruminant origin, or other feed or feed ingredients contaminated with these;

 ii) the use of ruminant carcasses (including from fallen stock), by-products and slaughterhouse waste, the parameters of the rendering processes and the methods of animal feed manufacture;
Appendix XI (contd)

iii) the feeding or not of ruminants with meat-and-bone meal and greaves derived from ruminants, including measures to prevent cross-contamination of animal feed;

iv) the level of surveillance for BSE conducted on the cattle population to that time and the results of that surveillance.

2) on-going awareness programme for veterinarians, farmers, and workers involved in transportation, marketing and slaughter of cattle to encourage reporting of all cases showing clinical signs consistent with BSE in target sub-populations as defined in Articles Appendix 3.8.4.2 and 3.8.4.3.

3) the compulsory notification and investigation of all cattle showing clinical signs consistent with BSE;

4) the examination in an approved laboratory of brain or other tissues collected within the framework of the aforementioned surveillance and monitoring system.

5) a BSE surveillance and monitoring system with emphasis on risks identified in point 1) above, taking into account the guidelines in Appendix 3.8.4; records of the number and results of investigations should be maintained for at least 7 years;

When the risk assessment (which takes into account the surveillance referred to in the release and exposure assessments above) demonstrates non-negligible risk, the country should conduct Type A surveillance in accordance with Appendix 3.8.4.

When the risk assessment (which takes into account the surveillance referred to in the release and exposure assessments above) demonstrates negligible risk, the country should conduct Type B surveillance in accordance with Appendix 3.8.4.

Article 3

Negligible BSE risk without commodity-specific risk mitigation mitigating measures

Commodities from the cattle population of a country, zone or compartment pose a negligible risk of transmitting the BSE agent without the need to apply commodity-specific risk mitigation mitigating measures, should the following conditions be met:

1) a risk assessment, as described in point 1) of Article 2, has been conducted in order to identify the historical and existing risk factors and the country has been demonstrated that appropriate generic measures have been taken for the relevant period of time defined below to manage any all risk identified;

2) the country has demonstrated that Type B a level of surveillance and monitoring which complies with the requirements of in accordance with Appendix 3.8.4. is in place, and

3) EITHER:

 a) there has been no case of BSE, or any case of BSE has been demonstrated to have been imported and has been completely destroyed, and:

 i) the criteria in points 2) to 3) of Article 2 have been complied with for at least 7 years; and

 ii) it has been demonstrated, through an appropriate level of control and audit, that for at least 8 years meat-and-bone meal or greaves derived from ruminants has not been fed to ruminants;
Appendix XI (contd)

OR

b) the last indigenous case of BSE was reported more than 7 years ago; and

i) the criteria in points 2) to 5) of Article 2 have been complied with for at least 7 years; and

ii) it has been demonstrated, thorough an appropriate level of control and audit, that for at least 8 years the feeding of ruminants with meat-and-bone meal and greaves derived from ruminants has not been fed to ruminants; banned and the ban has been effectively enforced for at least 8 years; and

iii) all BSE cases, as well as:

- all the progeny of female cases, born within 2 years prior to or after clinical onset of the disease, and

- all cattle which, during their first year of life, were reared with the BSE cases during their first year of life, and which investigation showed consumed the same potentially contaminated feed during that period, or

- if the results of the investigation are inconclusive, all cattle born in the same herd as, and within 12 months of the birth of, the BSE cases, if alive in the country, zone or compartment, are permanently identified, and their movements controlled, and when slaughtered or at death, are completely destroyed.

Article 4

Negligible BSE risk with commodity-specific risk mitigation mitigating measures

Commodities from the cattle population of a country, zone or compartment pose a negligible risk of transmitting the BSE agent due to the application of additional commodity-specific risk mitigation measures, should the following conditions be met:

1) a risk assessment, as described in point 1) of Article 2, has been conducted in order to identify the historical and existing risk factors, and the country has not demonstrated that appropriate generic measures have been taken for the relevant period of time defined below to manage any all risks identified;

2) the country has demonstrated that level of Type A surveillance and monitoring which complies with the requirements of in accordance with Appendix 3.8.4. is in place; and

3) EITHER

a) there has been no case of BSE or any case of BSE has been demonstrated to have been imported and has been completely destroyed, the criteria in points 2) to 4) of Article 2 are complied with, and it can be demonstrated, through an appropriate level of control and audit, that meat-and-bone meal and greaves derived from ruminants has not been fed to ruminants; banned and either at least one of the following two conditions applies:

i) the criteria in points 2) to 5) of Article 2 are complied with, but have not been complied with for 7 years; or
Appendix XI (contd)

ii) it cannot be has not been demonstrated that for at least 8 years controls over the feeding of meat-and-bone meal or greaves derived from ruminants to ruminants have been in place for 8 years; has not been fed to ruminants

OR

b) there has been an the last indigenous case of BSE was reported more than 7 years ago, the criteria in points 2) to 4) of Article 2 are complied with, and it can be demonstrated, through an appropriate level of control and audit that a ban on feeding ruminants meat-and-bone meal and greaves derived from ruminants is have not been fed to ruminants effectively enforced, but either at least one of the following two conditions applies:

i) the criteria in points 2) to 4) of Article 2 have not been complied with for 7 years; or

ii) the ban on feeding ruminants with it cannot be demonstrated that controls over the feeding of meat-and-bone meal and greaves derived from ruminants to ruminants have been in place has not been effectively enforced for 8 years;

AND

iii) all BSE cases, as well as:

- all the progeny of female cases, born within 2 years prior to or after clinical onset of the disease, and

- all cattle which, during their first year of life, were reared with the BSE cases during their first year of life, and which investigation showed consumed the same potentially contaminated feed during that period, or

- if the results of the investigation are inconclusive, all cattle born in the same herd as, and within 12 months of the birth of, the BSE cases, if alive in the country, zone or compartment, are permanently identified, and their movements controlled, and when slaughtered or at death, are completely destroyed;

OR

e) the last indigenous case of BSE has been reported less than 7 years ago, and:

i) the criteria in points 2) to 4) of Article 2 have been complied with for at least 7 years;

ii) the ban on feeding ruminants with meat-and-bone meal and greaves derived from ruminants has been effectively enforced for at least 8 years;

iii) all BSE cases, as well as:

- all the progeny of female cases, born within 2 years prior to or after clinical onset of the disease, and

- all cattle which, during their first year of life, were reared with the BSE cases during their first year of life, and which investigation showed consumed the same potentially contaminated feed during that period, or

- if the results of the investigation are inconclusive, all cattle born in the same herd as, and within 12 months of the birth of, the BSE cases, if alive in the country, zone or compartment, are permanently identified, and their movements controlled, and when slaughtered or at death, are completely destroyed.
Appendix XI (contd)

Article 5

Undetermined BSE risk

The cattle population of a country, zone or compartment poses an undetermined BSE risk if it cannot be demonstrated that it meets the requirements of another category.

Article 6

When importing from a country, zone or compartment posing a negligible BSE risk without commodity-specific risk mitigation measures, Veterinary Administrations should require:

for all commodities from cattle not listed in point 1) of Article 1

the presentation of an international veterinary certificate attesting that the country or zone/compartment complies with the conditions in Article 3.

Article 7

When importing from a country, zone or compartment posing a negligible BSE risk with commodity-specific risk mitigation measures, Veterinary Administrations should require:

for cattle

the presentation of an international veterinary certificate attesting that:

1) the country, zone or compartment complies with the conditions in Article 4;

2) cattle selected for export are identified by a permanent identification system enabling them to be traced back to the dam and herd of origin, and are not exposed cattle as described in point 2) c) iii) of Article 4;

3) in the case of a country, zone or compartment with an indigenous case, cattle selected for export were born after the date from which the ban on the feeding of ruminants with meat-and-bone meal and greaves derived from ruminants had been effectively enforced.

Article 8

When importing from a country, zone or compartment with an undetermined BSE risk, Veterinary Administrations should require:

for cattle

the presentation of an international veterinary certificate attesting that:

1) the feeding of ruminants with meat-and-bone meal and greaves derived from ruminants has been banned and the ban has been effectively enforced;

2) all BSE cases, as well as:

a) all the progeny of female cases, born within 2 years prior to or after clinical onset of the disease,
b) all cattle which, during their first year of life, were reared with the BSE cases during their first year of life, and, which investigation showed consumed the same potentially contaminated feed during that period, or

c) if the results of the investigation are inconclusive, all cattle born in the same herd as, and within 12 months of the birth of, the BSE cases, if alive in the country, zone or compartment, are permanently identified, and their movements controlled, and when slaughtered or at death, are completely destroyed;

3) cattle selected for export:
 a) are identified by a permanent identification system enabling them to be traced back to the dam and herd of origin and are not the progeny of BSE suspect or confirmed females;
 b) were born at least 2 years after the date from which the ban on the feeding of ruminants with meat-and-bone meal and greaves derived from ruminants was effectively enforced.

Article 9

When importing from a country, zone or compartment posing a negligible BSE risk without commodity-specific risk mitigation measures, Veterinary Administrations should require:

- for fresh meat and meat products from cattle (other than that listed in point 1) of Article 1
 - the presentation of an international veterinary certificate attesting that:
 1) the country, zone or compartment complies with the conditions in Article 3;
 2) ante-mortem and post-mortem inspections were carried out on all cattle from which the fresh meat or meat products originate.

Article 10

When importing from a country, zone or compartment posing a negligible BSE risk with commodity-specific risk mitigation measures, Veterinary Administrations should require:

- for fresh meat and meat products from cattle (other than those listed in point 1) of Article 1
 - the presentation of an international veterinary certificate attesting that:
 1) the country, zone or compartment complies with the conditions in Article 4;
 2) ante-mortem and post-mortem inspections were carried out on all cattle from which the fresh meat and meat products originate;
 3) cattle from which the fresh meat and meat products destined for export originate were not subjected to a stunning process, prior to slaughter, with a device injecting compressed air or gas into the cranial cavity, or to a pithing process (dissertation, after stunning, of central nervous tissue by means of an elongated rod-shaped instrument introduced into the cranial cavity);
 4) the fresh meat and meat products do not contain:
 a) the tissues listed in Article 13,
 b) mechanically separated meat from the skull and vertebral column from cattle over 30 months of age,
 all of which have been completely removed in a manner to avoid contamination of the fresh meat and meat products these tissues.
Appendix XI (contd)

Article 11

When importing from a country, zone or compartment with an undetermined BSE risk, Veterinary Administrations should require:

for fresh meat and meat products from cattle (other than those listed in point 1) of Article 1,

the presentation of an international veterinary certificate attesting that:

1) the cattle from which the fresh meat and meat products originate:
 a) are not suspect or confirmed BSE cases;
 b) have not been fed meat-and-bone meal or greaves for at least 8 years;
 c) were subjected to ante-mortem and post-mortem inspections;
 d) were not subjected to a stunning process, prior to slaughter, with a device injecting compressed air or gas into the cranial cavity, or to a pithing process;

2) the fresh meat and meat products are derived from deboned meat and do not contain:
 a) the tissues listed in Article 13,
 b) nervous and lymphatic tissues exposed during the deboning process,
 c) mechanically separated meat from the skull and vertebral column from cattle over 12 months of age,

all of which have been completely removed in a manner to avoid contamination of the fresh meat and meat products these tissues.

Article 12

Ruminant-derived meat-and-bone meal or greaves, or any commodities containing such products, which originate from a country, zone or compartment defined in Articles 4 and 5 should not be traded between countries.

Article 13

1) From cattle of any age originating from a country, zone or compartment defined in Articles 4 and 5, the following commodities, and any commodity contaminated by them, should not be traded for the preparation of food, feed, fertilisers, cosmetics, pharmaceuticals including biologicals, or medical devices: tonsils and distal ileum, and protein products derived thereof. Food, feed, fertilisers, cosmetics, pharmaceuticals or medical devices prepared using these commodities should also not be traded.

2) From cattle that were at the time of slaughter over 30 months of age originating from a country, zone or compartment defined in Article 4, the following commodities, and any commodity contaminated by them, should not be traded for the preparation of food, feed, fertilisers, cosmetics, pharmaceuticals including biologicals, or medical devices: brains, eyes, spinal cord, skull, vertebral column and derived protein products. Food, feed, fertilisers, cosmetics, pharmaceuticals or medical devices prepared using these commodities should also not be traded.
3) From cattle that were at the time of slaughter over 12 months of age originating from a country, zone or compartment defined in Article 5, the following commodities, and any commodity contaminated by them, should not be traded for the preparation of food, feed, fertilisers, cosmetics, pharmaceuticals including biologicals, or medical devices: brains, eyes, spinal cord, skull, vertebral column and derived protein products. Food, feed, fertilisers, cosmetics, pharmaceuticals or medical devices prepared using these commodities should also not be traded.

Article 14

Veterinary Administrations of importing countries should require:

for gelatin and collagen prepared from bones or from hides and skins from the head and intended for food or feed, cosmetics, pharmaceuticals including biologicals, or medical devices

the presentation of an international veterinary certificate attesting that the commodities came from:

1) a country, zone or compartment posing a negligible BSE risk without commodity-specific risk mitigation measures; or

2) a country, zone or compartment posing a negligible BSE risk with commodity-specific risk mitigation measures; and

a) skulls and vertebrae (except tail vertebrae) and hides and skins from the head have been excluded;

b) the bones have been subjected to a process which includes all the following steps:
 i) pressure washing (degreasing),
 ii) acid demineralisation,
 iii) prolonged alkaline treatment,
 iv) filtration,
 v) sterilisation at $\geq 138^\circ$C for a minimum of 4 seconds,

or to an equivalent process in terms of infectivity reduction.

Article 15

Veterinary Administrations of importing countries should require:

for tallow and dicalcium phosphate (other than protein-free tallow as defined in Article 1) intended for food, feed, fertilisers, cosmetics, pharmaceuticals including biologicals, or medical devices

the presentation of an international veterinary certificate attesting that it originates from:

1) a country, zone or compartment posing a negligible BSE risk without commodity-specific risk mitigation measures, or

2) a country, zone or compartment posing a negligible BSE risk with commodity-specific risk mitigation measures, and it originates from cattle which have been subjected to ante-mortem and post-mortem inspections for BSE with favourable results and has not been prepared using the tissues listed in point 2 of Article 13.
Appendix XI (contd)

Article 16

Veterinary Administrations of importing countries should require:

for tallow derivatives (other than those made from protein-free tallow as defined in Article 1) intended for food, feed, fertilisers, cosmetics, pharmaceuticals including biologicals, or medical devices

the presentation of an international veterinary certificate attesting that:

1) they originate from a country, zone or compartment posing a negligible BSE risk without commodity-specific risk mitigation measures; or

2) they have been produced by hydrolysis, saponification or transesterification using high temperature and pressure.

- text deleted
APPENDIX 3.8.4.

SURVEILLANCE FOR BOVINE SPONGIFORM ENCEPHALOPATHY

Article 3.8.4.1.

Introduction

1) Depending on the bovine spongiform encephalopathy (BSE) risk category of a country, zone or compartment, surveillance for BSE may have one or more goals:
 a) detecting BSE, to a pre-determined design prevalence, in a country, zone or compartment;
 b) monitoring the evolution of BSE in a country, zone or compartment;
 c) monitoring the effectiveness of a feed ban and/or other risk mitigation measures, in conjunction with auditing, etc;
 d) supporting a claimed BSE status;
 e) gaining or regaining a higher BSE status.

2) When the BSE agent is present in a country or zone, the cattle population will comprise the following sectors, in order of decreasing size:
 a) cattle not exposed to the infective agent;
 b) cattle exposed but not infected;
 c) infected cattle, which may lie within one of three stages in the progress of BSE:
 i) the majority will die or be killed before reaching a stage at which BSE is detectable by current methods;
 ii) some will progress to a stage at which BSE is detectable by testing before clinical signs appear;
 iii) the smallest number will show clinical signs.

3) The BSE status of a country, zone or compartment cannot be determined only on the basis of a surveillance programme but should be determined in accordance with all the factors listed in Article 2.3.13.2. The surveillance programme should take into account the diagnostic limitations associated with the above sectors and the relative distributions of infected cattle among them.

4) With respect to the distribution and expression of the BSE agent within the sectors described above, the following four subpopulations of cattle have been identified for surveillance purposes:
 a) cattle over 30 months of age displaying behavioural or clinical signs consistent with BSE;
 b) cattle over 30 months of age that are non-ambulatory, recumbent, unable to rise or to walk without assistance; cattle over 30 months of age sent for emergency slaughter or condemned at ante-mortem inspection (casualty, emergency slaughter or downer cattle);
Appendix XII (contd)

c) cattle over 30 months of age which are found dead on farm, during transport or at an abattoir (fallen stock).

d) cattle over 36 months of age at routine slaughter.

5) A gradient is used to describe the relative value of surveillance applied to each subpopulation. Surveillance should focus on the first subpopulation, but investigation of other subpopulations will help to provide an accurate assessment of the BSE situation in the country, zone or compartment. All countries should sample at least three of the four subpopulations. This approach is consistent with Appendix 3.8.1. on surveillance and monitoring of animal health.

Article 3.8.4.2.

Description of cattle subpopulations

1) Cattle over 30 months of age displaying behavioural or clinical signs consistent with BSE

Cattle affected by illnesses that are refractory to treatment, and displaying progressive behavioural changes such as excitability, persistent kicking when milked, changes in herd hierarchical status, hesitation at doors, gates and barriers, as well as those displaying progressive neurological signs without signs of infectious illness are candidates for examination. These behavioural changes, being very subtle, are best identified by those who handle animals on a daily basis. Since BSE causes no pathognomonic clinical signs, all countries with cattle populations will observe individual animals displaying clinical signs consistent with BSE. It should be recognised that cases may display only some of these signs, which may also vary in severity, and such animals should still be investigated as potential BSE affected animals. The rate at which such suspicious cases are likely to occur will differ among epidemiological situations and cannot therefore be predicted reliably.

This subpopulation, particularly cattle over 30 months of age, is the one exhibiting the highest prevalence. The recognition greatly depends on the owner’s awareness and observation of suspect animals. The reporting of these suspect animals when at the farm will depend on the owner’s motivation based on cost and socio-economic repercussions.

2) Cattle over 30 months of age that are non-ambulatory, recumbent, unable to rise or to walk without assistance; cattle over 30 months of age sent for emergency slaughter or condemned at ante-mortem inspection (casualty or emergency slaughter, or downer cattle)

These cattle may have exhibited some of the clinical signs listed above which were not recognised as being consistent with BSE. Experience in countries where BSE has been identified indicates that this subpopulation is the one demonstrating the second highest prevalence. For that reason, it is the second most appropriate population to target in order to detect BSE.

3) Cattle over 30 months of age which are found dead on farm, during transport or at an abattoir (fallen stock)

These cattle may have exhibited some of the clinical signs listed above prior to death, but were not recognised as being consistent with BSE. Experience in countries where BSE has been identified indicates that this subpopulation is the one demonstrating the third highest prevalence.
4) **Cattle over 36 months of age at routine slaughter**

Experience in countries where BSE has been identified indicates that this subpopulation is the one demonstrating the lowest prevalence. For that reason, it is the least appropriate population to target in order to detect BSE. However, sampling in this subpopulation may be an aide in monitoring the progress of the epizootic and the efficacy of control measures applied, because it offers continuous access to a cattle population of known class, age structure and geographical origin. Testing of routine slaughter cattle younger than 36 months is of relatively very little value (Table 2).

Within each of the above subpopulations, countries may wish to target cattle identifiable as imported from countries or zones not free from BSE, cattle which have consumed potentially contaminated feedstuffs from countries or zones not free from BSE, offspring of BSE affected cows and cattle which have consumed feedstuffs potentially contaminated with other TSE agents.

When establishing a surveillance strategy, authorities must take into account inherent difficulties of obtaining samples on farm. These difficulties include higher cost, necessity for education and motivation of owners, counteracting potentially negative socio-economic implication. Authorities must find ways to overcome these difficulties.

Article 3.8.4.3.

1) **Implementation of type A surveillance**

In order to implement efficiently a surveillance strategy for BSE, a country must use good quality data (or reliable estimates) concerning the age distribution of its adult cattle population and the number of cattle tested for BSE stratified by age and by subpopulation. Depending on the country's choice, the application of the following procedure will allow the detection of BSE prevalence of either at least one case per million in the adult cattle population, or at least one case per 100,000 in the adult cattle population, at a confidence level of 95% in the country, zone or compartment of concern. This Appendix utilises Tables 1 and 2 to determine a desired surveillance point target and the point values of surveillance samples collected.

The approach assigns ‘point values’ to each sample, based on the subpopulation from which it was collected and the likelihood of detecting infected cattle in that subpopulation. The number of points a sample is assigned is determined by the subpopulation from which the sample is collected and the age of the animal sampled. The total points accumulation is then periodically compared to the target number of points for a country, zone or compartment.

A country should design its surveillance strategy to ensure that samples are representative of the herd of the country, zone or compartment, and include consideration of demographic factors such as production type and geographic location, and the potential influence of culturally unique husbandry practices. The approach used and the assumptions made should be fully documented, and the documentation retained for 7 years.

The points targets and surveillance point values in the appendix were obtained by applying the following factors to a statistical model:
Appendix XII (contd)

a) a prevalence of either at least one case per million or one case per 100,000 of the adult cattle population;

b) a confidence level of 95%;

c) the pathogenesis, and pathological and clinical expression of BSE:
 i) sensitivity of diagnostic methods used;
 ii) relative frequency of expression by age;
 iii) relative frequency of expression within each subpopulation;
 iv) interval between clinical pathological change and clinical expression;

d) demographics of the cattle population, including age distribution;

e) influence of BSE on culling or attrition of animals from the cattle population via the four subpopulations;

f) percentage of infected animals in the cattle population which are not detected.

Although the procedure accepts very basic information about a cattle population, and can be used with estimates and less precise data, careful collection and documentation of the data significantly enhance their value. Since samples from clinical suspect animals provide many times more information than samples from healthy or dead-of-unknown-cause animals, careful attention to the input data can substantially decrease the procedure’s cost and the number of samples needed. The essential input data are:

g) cattle population numbers stratified by age;

h) the number of cattle tested for BSE stratified by age and by subpopulation.

2) Maintenance (type B) surveillance (under study)

For countries which have demonstrated through risk assessment (including surveillance) that they meet the requirements for ‘negligible risk without commodity-specific risk mitigation measures’, surveillance should continue at a reduced, maintenance level.

Maintenance surveillance should focus on the higher prevalence subpopulations (especially clinical suspects). The number of clinical suspect samples taken annually should approximate the number of samples taken annually from clinical suspect cases during the time taken to reach the country, zone or compartment’s BSE status (to a maximum of seven years).

Article 3.8.4.4.

1) Selecting the points target

The desired surveillance points target is selected from Table 1, which shows target points for adult cattle populations of different sizes. A country’s adult cattle population size may be estimated or may be set at one million because, for statistical reasons, one million is the point beyond which sample size does not further increase with population size. The target depends on the design prevalence chosen by the country.
Table 1 Points targets for different adult cattle population sizes in a country, zone or compartment which has not identified any BSE cases

<table>
<thead>
<tr>
<th>Adult Cattle Population Size (24 months and older)</th>
<th>*DP 1/1,000,000</th>
<th>*DP 1/100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1,000,000</td>
<td>3,000,000</td>
<td>300,000</td>
</tr>
<tr>
<td>800,000 – 1,000,000</td>
<td>2,400,000</td>
<td>240,000</td>
</tr>
<tr>
<td>600,000 – 800,000</td>
<td>1,800,000</td>
<td>180,000</td>
</tr>
<tr>
<td>400,000 – 600,000</td>
<td>1,200,000</td>
<td>120,000</td>
</tr>
<tr>
<td>200,000 – 400,000</td>
<td>600,000</td>
<td>60,000</td>
</tr>
<tr>
<td>100,000 – 200,000</td>
<td>300,000</td>
<td>30,000</td>
</tr>
<tr>
<td>50,000 – 100,000</td>
<td>150,000</td>
<td>15,000</td>
</tr>
</tbody>
</table>

*DP is the maximum possible prevalence or “design prevalence”.

2) Determining the point values of samples collected

Table 2 can be used to determine the point values of the surveillance samples collected. The approach assigns point values to each sample according to the likelihood of detecting infection based on the subpopulation from which the sample was collected and the age of the animal sampled. This approach takes into account the general principles of surveillance described in Appendix 3.8.1. and the epidemiology of BSE.

Because precise aging of the animals that are sampled may not be possible, Table 2 combines point values into five age categories. The point estimates for each category were determined as an average for the age range comprising the group. The age groups were selected on their relative likelihoods of expressing BSE according to scientific knowledge of the incubation of the disease and the world BSE experience. Samples may be collected from any combination of subpopulations and ages but should reflect the demographics of the cattle herd of the country, zone or compartment. In addition, countries should sample at least three of the four subpopulations.

The total points for samples collected may be accumulated over a period of a maximum of 7 consecutive years to achieve the target number of points determined in Table 1.
Appendix XII (contd)

Table 2 Surveillance point values for samples collected from animals in the given subpopulation and age category

<table>
<thead>
<tr>
<th>Surveillance subpopulation</th>
<th>Routine slaughter *</th>
<th>Fallen stock **</th>
<th>Casualty slaughter ***</th>
<th>Clinical suspect ****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 1 year and < 2 years</td>
<td>0.01</td>
<td>0.2</td>
<td>0.4</td>
<td>N/A</td>
</tr>
<tr>
<td>Age ≥ 2 years and < 4 years (young adult)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>260</td>
</tr>
<tr>
<td>Age ≥ 4 years and < 7 years (middle adult)</td>
<td>0.2</td>
<td>0.9</td>
<td>1.6</td>
<td>750</td>
</tr>
<tr>
<td>Age ≥ 7 years and < 9 years (older adult)</td>
<td>0.1</td>
<td>0.4</td>
<td>0.7</td>
<td>220</td>
</tr>
<tr>
<td>Age ≥ 9 years (aged)</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>45</td>
</tr>
</tbody>
</table>

* Article 3.8.4.2.4
** Article 3.8.4.2.3
*** Article 3.8.4.2.2
**** Article 3.8.4.2.1

Surveillance points remain valid for 7 years (the 95th percentile of the incubation period).

Article 3.8.4.5.

To monitor the evolution of BSE in a country, zone or compartment once it is detected

To monitor the evolution of BSE in a country, zone or compartment once it is detected, a more intensive sampling method needs to be used to determine disease prevalence. For countries that have determined that BSE exists within their cattle population, the goal of surveillance shifts from one of detection to one of monitoring the extent and evolution of the disease, and monitoring the effectiveness of control measures such as feed bans and SRM removal policies.
Appendix XIII

APPENDIX 3.6.3.

PROCEDURES FOR THE REDUCTION OF INFECTIVITY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY AGENTS IN ACTIVATION PROCEDURES

Article 3.6.3.1.

Meat-and-bone meal

For the inactivation of transmissible spongiform encephalopathy agents for the production of meat-and-bone meal containing ruminant proteins, the following procedure should be used:

The following procedure should be used to reduce the infectivity of any transmissible spongiform encephalopathy agents which may be present during the production of meat-and-bone meal containing ruminant proteins:

1. The raw material should be reduced to a maximum particle size of 50 mm before heating.
2. The raw material should be heated under saturated steam conditions to a temperature of not less than 133°C for a minimum of 20 minutes at an absolute pressure of 3 bar.
Appendix XIV

CHAPTER 2.6.7.

CLASSICAL SWINE FEVER

Article 2.6.7.1.

The pig is the only natural host for classical swine fever (CSF) virus. The definition of pigs includes all varieties of *Sus scrofa*, both domestic breeds and wild boar. A distinction is made between farmed and permanently captive pigs, and free-living pigs. Farmed and permanently captive pigs of any breed will hereafter be referred to as domestic pigs. Free-living pigs of any breed will hereafter be referred to as wild pigs. Extensively kept pigs may fall into either of these categories or may alternate between the two.

Pigs exposed to CSF virus prenatally may be persistently infected throughout life and may have an incubation period of several months before showing signs of disease. Pigs exposed postnatally have an incubation period of 7-10 days, and are usually infective between post-infection days 5 and 14, but up to 3 months in cases of chronic infections.

Standards for diagnostic tests and vaccines are described in the *Terrestrial Manual*.

Article 2.6.7.2.

The CSF status of a country or zone can only be determined after considering the following criteria both in domestic and wild pigs:

1) a risk assessment has been conducted, identifying all potential factors for CSF occurrence and their historic perspective;

2) CSF should be notifiable in the whole country and all clinical signs suggestive of CSF should be subjected to field and/or laboratory investigations;

3) an on-going awareness programme should be in place to encourage reporting of all cases suggestive of CSF;

4) the Veterinary Administration should have current knowledge of, and authority over, all establishments containing pigs in the whole country;

5) the Veterinary Administration should have current knowledge about the population and habitat of wild pigs in the whole country.

Article 2.6.7.3.

For the purposes of the *Terrestrial Code*.

‘CSF infected establishment’ means a domestic pig holding in which the presence of the infection has been confirmed by field and/or laboratory investigations.

‘Country, zone or compartment with CSF infection in domestic pigs’ means a country, zone or compartment containing a CSF infected establishment.

The size and limits of a CSF domestic pig control area must be based on the control measures used and the presence of natural and administrative boundaries, as well as an assessment of the risks for disease spread.
Appendix XIV (contd)

Article 2.6.7.4.

Country or zone free of CSF in domestic and wild pigs

1) Historically free status

A country or zone may be considered free from the disease in domestic and wild pigs after conducting a risk assessment as referred to in Article 2.6.7.2, but without formally applying a specific surveillance programme (historical freedom) if the country or zone complies with the provisions of Article 3.8.1.2.

2) Free status as a result of an eradication programme

A country or zone which does not meet the conditions of point 1) above may be considered free from CSF in domestic and wild pigs after the conduct of a risk assessment as referred to in Article 2.6.7.2. and when:

a) it is a notifiable disease;

b) domestic pigs are properly identified when leaving their establishment of origin with an indelible mark giving the identification number of their herd of origin, a reliable tracing back procedure is in place for all pigs leaving their establishment of origin;

c) the feeding of swill is forbidden, unless the swill has been treated to destroy any CSF virus that may be present, in conformity with one of the procedures referred to in Article 3.6.4.1;

d) animal health regulations to control the movement of commodities covered in this Chapter in order to minimise the risk of introduction of the infection into the establishments of the country or zone have been in place for at least 2 years;

AND EITHER

e) where a stamping-out policy without vaccination has been practised for CSF control, no outbreak has been observed in domestic pigs for at least 6 months; or

f) where a stamping-out policy combined with vaccination has been practised, vaccination against CSF should have been banned for all domestic pigs in the country or zone for at least one year, unless there are validated means of distinguishing between vaccinated and infected pigs; if vaccination has occurred in the past 5 years, a serological monitoring system should have been in place for at least 6 months to demonstrate absence of infection within the population of domestic pigs 6 months to one year old, and no outbreak has been observed in domestic pigs for at least 12 months; or

g) where a vaccination strategy has been adopted, with or without a stamping-out policy, vaccination against CSF should have been banned for all domestic pigs in the country or zone for at least one year, unless there are validated means of distinguishing between vaccinated and infected pigs; if vaccination has occurred in the past 5 years, a serological monitoring system should have surveillance in accordance with Appendix XXX has been in place for at least 6 months to demonstrate absence of infection within the population of domestic pigs 6 months to one year old, and no outbreak has been observed in domestic pigs for at least 12 months;

AND

h) CSF infection is not known to occur in the wild pig population and monitoring of wild pigs indicates that there is no residual infection.
Article 2.6.7.5.

Country or zone free of CSF in domestic pigs but with infection in the wild pig population

Requirements in point 2) of Article 2.6.7.4., as relevant, are complied with, but CSF infection is known to occur in wild pigs. Additional conditions for the free status are that in the country or zone:

1) a programme for the management of CSF in wild pigs is in place, and CSF wild pig control areas are delineated around every CSF case reported in wild pigs, taking into account the measures in place to manage the disease in the wild pig population, the presence of natural boundaries, the ecology of the wild pig population, and an assessment of the risk of disease spread;

2) biosecurity measures are applied to prevent transmission from wild pigs to domestic pigs;

3) clinical and laboratory monitoring (under study) surveillance in accordance with Appendix XXX is carried out in the domestic pig population, with negative results.

Article 2.6.7.6.

Recovery of free status

Should a CSF outbreak occur in an establishment of a free country or zone (free in domestic and wild pigs, or free in domestic pigs only), the status of the country or zone may be restored at least 30 days after completion of a stamping-out policy which should include the following measures:

1) a CSF domestic pig control area (including an inner protection area of at least 3-kilometre radius and an outer surveillance area of at least 10-kilometre radius) should be delineated around the outbreak, taking into account the control measures applied, the presence of natural and administrative boundaries, and an assessment of the risk of disease spread;

2) all the pigs have been killed and their carcasses destroyed, and disinfection has been applied within the establishment;

3) in the protection area around a CSF outbreak:
 a) a risk assessment should be carried out to determine the likelihood of CSF infection in neighbouring establishments; when a significant risk is indicated, a stamping-out policy of all domestic pigs within a radius of at least 0.5 kilometre may be applied;
 b) an immediate clinical examination of all pigs in all pig establishments situated within the protection area has been carried out;

4) in the surveillance area around a CSF outbreak, all sick pigs should be subjected to laboratory tests for CSF;

5) an epidemiological examination including clinical examination, and/or serological and/or virological testing surveillance in accordance with Appendix XXX has been carried out in all pig establishments that have been directly or indirectly in contact with the infected establishment and in all pig establishments located within the CSF domestic pig control area, demonstrating that these establishments are not infected;

6) measures aimed at preventing any virus spread by live pigs, pig semen and pig embryos, contaminated material, vehicles, etc. have been implemented.
Appendix XIV (contd)

If emergency vaccination has been practised within the CSF domestic pig control area, recovery of the free status can not occur before all the vaccinated pigs have been slaughtered, unless there are validated means of distinguishing between vaccinated and infected pigs.

Article 2.6.7.7.

Country or zone free of CSF in wild pigs

A country or zone may be considered free from CSF in wild pigs when:

1) the domestic pig population in the country or zone is free from CSF infection;
2) a monitoring system (under study) surveillance in accordance with Appendix XXX has been in place to determine the CSF status of the wild pig population in the country, and in the country or zone:
 a) there has been no clinical, nor virological evidence of CSF in wild pigs during the last past 12 months;
 b) no seropositive wild pigs have been detected in the age class 6-12 months during the last past 12 months;
3) there has been no vaccination in wild pigs for at least past 12 months;
4) the feeding of swill to wild pigs is forbidden, unless the swill has been treated to destroy any CSF virus that may be present in conformity with one of the procedures referred to in Article 3.6.4.1.;
5) imported wild pigs comply with the relevant requirements set forth in the present chapter.

A zoning approach can only be adopted if there is a wild pig population that is isolated from other wild pigs.

Article 2.6.7.8.

When importing from countries or zones free of CSF in domestic and wild pigs, Veterinary Administrations should require:

for domestic pigs

the presentation of an international veterinary certificate attesting that the animals:

1) showed no clinical sign of CSF on the day of shipment;
2) were kept in a country or zone free of CSF in domestic and wild pigs since birth or for at least the past 3 months;
3) have not been vaccinated against CSF, nor are they the progeny of vaccinated sows, unless there are validated means of distinguishing between vaccinated and infected pigs.

Article 2.6.7.9.

When importing from countries or zones free of CSF in domestic pigs but with infection in the wild pig population, Veterinary Administrations should require:
for domestic pigs

the presentation of an international veterinary certificate attesting that the animals:

1) were kept in a country or zone free of CSF in domestic pigs since birth or for at least the past 3 months;

2) have not been vaccinated against CSF, nor are they the progeny of vaccinated sows, unless there are validated means of distinguishing between vaccinated and infected pigs;

3) come from an establishment which is not located in a CSF wild pig control area as defined in Article 2.6.7.5., and has been regularly monitored to verify absence of CSF in accordance with Appendix XXX;

4) have had no contact with pigs introduced into the establishment during the past 40 days;

5) showed no clinical sign of CSF on the day of shipment.

Article 2.6.7.10.

When importing from countries or zones with CSF infection in domestic pigs, Veterinary Administrations should require:

for domestic pigs

the presentation of an international veterinary certificate attesting that the animals:

1) have not been vaccinated against CSF nor are they the progeny of vaccinated sows, unless there are validated means of distinguishing between vaccinated and infected pigs;

2) were kept since birth, or for the past 3 months, in an establishment not situated in a CSF domestic or wild pig control area as defined in Article 2.6.7.5. and in Article 2.6.7.6.;

3) were isolated in a quarantine station for at least 40 days;

4) were subjected during that period of quarantine to a virological test, and a serological test performed at least 21 days after entry into the quarantine station, with negative results;

5) showed no clinical sign of CSF on the day of shipment.

Article 2.6.7.11.

When importing from countries or zones free of CSF in domestic and wild pigs, Veterinary Administrations should require:

for wild pigs

the presentation of an international veterinary certificate attesting that the animals:

1) showed no clinical sign of CSF on the day of shipment;

2) have been captured in a country or zone free from CSF in domestic and wild pigs;
Appendix XIV (contd)

3) have not been vaccinated against CSF, unless there are validated means of distinguishing between vaccinated and infected pigs;

and, if the zone where the animal has been captured is adjacent to a zone with infection in wild pigs:

4) were kept in a quarantine station for 40 days prior to shipment, and were subjected to a virological test, and a serological test performed at least 21 days after entry into the quarantine station, with negative results.

Article 2.6.7.12.

When importing from countries or zones free of CSF in domestic and wild pigs, Veterinary Administrations should require:

for semen of domestic pigs

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) were kept in a country or zone free of CSF in domestic and wild pigs since birth or for at least the past 3 months;
 b) showed no clinical sign of CSF on the day of collection of the semen;

2) the semen was collected, processed and stored in conformity with the provisions of Appendix 3.2.3.

Article 2.6.7.13.

When importing from countries or zones free of CSF in domestic pigs but with infection in the wild pig population, Veterinary Administrations should require:

for semen of domestic pigs

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) have been kept in an artificial insemination centre which is not located in a CSF wild pig control area and is regularly monitored to verify absence of CSF in accordance with Appendix XXX;
 b) were isolated in the artificial insemination centre for at least 40 days prior to collection;
 c) showed no clinical sign of CSF on the day of collection of the semen and for the following 40 days;

2) the semen was collected, processed and stored in conformity with the provisions of Appendix 3.2.3.

Article 2.6.7.14.

When importing from countries or zones considered infected with CSF in domestic pigs, Veterinary Administrations should require:
for semen of domestic pigs

the presentation of an international veterinary certificate attesting that:

1) the donor animals:
 a) showed no clinical sign of CSF on the day of collection of the semen and for the following 3 months;
 b) have not been vaccinated against CSF, and were subjected to a serological test performed at least 21 days after collection, with negative results;

2) the semen was collected, processed and stored in conformity with the provisions of Appendix 3.2.3.

Article 2.6.7.15.

When importing from countries or zones free of CSF in domestic and wild pigs, Veterinary Administrations should require:

for in vivo derived embryos of pigs

the presentation of an international veterinary certificate attesting that:

1) the donor females showed no clinical sign of CSF on the day of collection of the embryos;

2) the embryos were collected, processed and stored in conformity with the provisions of Appendix 3.3.1.

Article 2.6.7.16.

When importing from countries or zones free of CSF in domestic pigs but with infection in the wild pig population, Veterinary Administrations should require:

for in vivo derived embryos of pigs

the presentation of an international veterinary certificate attesting that:

1) the donor females:
 a) were kept for at least 40 days prior to collection in an establishment which is not located in a CSF domestic or wild pig control area and is regularly monitored to verify absence of CSF in accordance with Appendix XXX;
 b) showed no clinical sign of CSF on the day of collection of the embryos;

2) the embryos were collected, processed and stored in conformity with the provisions of Appendix 3.3.1.

Article 2.6.7.17.

When importing from countries considered infected with CSF in domestic pigs, Veterinary Administrations should require:
Appendix XIV (contd)

for in vivo derived embryos of pigs

the presentation of an international veterinary certificate attesting that:

1) the donor females:
 a) were kept for at least 40 days prior to collection in an establishment which is not located in a CSF domestic or wild pig control area and is regularly monitored to verify absence of CSF in accordance with Appendix XXX;
 b) showed no clinical sign of CSF on the day of collection of the embryos and for the following 21 days;
 c) have not been vaccinated against CSF and were subjected, with negative results, to a serological test performed at least 21 days after collection;

2) the embryos were collected, processed and stored in conformity with the provisions of Appendix 3.3.1.

Article 2.6.7.18.

When importing from countries or zones free of CSF in domestic and wild pigs, Veterinary Administrations should require:

for fresh meat of domestic pigs

the presentation of an international veterinary certificate attesting that the entire consignment of meat comes from animals which:

1) have been kept in a country or zone free of CSF in domestic and wild pigs since birth or for at least the past 3 months;

2) have been slaughtered in an approved abattoir, have been subjected to ante-mortem and post-mortem inspections and have been found free of any sign suggestive of CSF.

Article 2.6.7.19.

When importing from countries or zones free of CSF in domestic pigs but with infection in the wild pig population, Veterinary Administrations should require:

for fresh meat of domestic pigs

the presentation of an international veterinary certificate attesting that the entire consignment of meat comes from animals which:

1) were kept in a country or zone free of CSF in domestic pigs since birth or for at least the past 3 months;

2) were kept in an establishment which was not located in a CSF wild pig control area and had been regularly monitored to verify absence of CSF in accordance with Appendix XXX;

3) have been slaughtered in an approved abattoir not located in a CSF control area, have been subjected to ante-mortem and post-mortem inspections and have been found free of any sign suggestive of CSF.
Article 2.6.7.20.

When importing from countries or zones free of CSF in domestic and wild pigs, Veterinary Administrations should require:

for fresh meat of wild pigs

the presentation of an international veterinary certificate attesting that:

1) the entire consignment of meat comes from animals which:
 a) have been killed in a country or zone free of CSF in domestic and wild pigs;
 b) have been subjected to post-mortem inspection in an approved examination centre, and have been found free of any sign suggestive of CSF;

and, if the zone where the animal has been killed is adjacent to a zone with infection in wild pigs:

2) a sample has been collected from every animal shot, and has been subjected to a virological test and a serological test for CSF, with negative results.

Article 2.6.7.21.

Veterinary Administrations of importing countries should require:

for meat products of pigs (either domestic or wild), or for products of animal origin (from fresh meat of pigs) intended for use in animal feeding, for agricultural or industrial use, or for pharmaceutical or surgical use, or for trophies derived from wild pigs

the presentation of an international veterinary certificate attesting that the products:

1) have been prepared:
 a) exclusively from fresh meat meeting the conditions laid down in Articles 2.6.7.18., 2.6.7.19. or 2.6.7.20., as relevant;
 b) in a processing establishment:
 i) approved by the Veterinary Administration for export purposes;
 ii) regularly inspected by the Veterinary Authority;
 iii) not situated in a CSF control area;
 iv) processing only meat meeting the conditions laid down in Articles 2.6.7.18., 2.6.7.19. or 2.6.7.20., as relevant;

OR

2) have been processed in an establishment approved by the Veterinary Administration for export purposes and regularly inspected by the Veterinary Authority so as to ensure the destruction of the CSF virus in conformity with one of the procedures referred to in Article 3.6.4.2.
Appendix XIV (contd)

Article 2.6.7.22.

Veterinary Administrations of importing countries should require:

for products of animal origin (from pigs, but not derived from fresh meat) intended for use in animal feeding and for agricultural or industrial use

the presentation of an international veterinary certificate attesting that the products:

1) have been prepared:
 a) exclusively from products meeting the conditions laid down for fresh meat in Articles 2.6.7.18., 2.6.7.19. or 2.6.7.20., as relevant;
 b) in a processing establishment:
 i) approved by the Veterinary Administration for export purposes;
 ii) regularly inspected by the Veterinary Authority;
 iii) not situated in a CSF control area;
 iv) processing only products meeting the conditions laid down in point a) above;

OR

2) have been processed in an establishment approved by the Veterinary Administration for export purposes and regularly inspected by the Veterinary Authority so as to ensure the destruction of the CSF virus in conformity with one of the procedures referred to in Article 3.6.4.2.

Article 2.6.7.23.

Veterinary Administrations of importing countries should require:

for bristles (from pigs)

the presentation of an international veterinary certificate attesting that the products:

1) come from a country or zone free of CSF in domestic and wild pigs; or

2) have been processed in an establishment approved by the Veterinary Administration for export purposes and regularly inspected by the Veterinary Authority so as to ensure the destruction of the CSF virus.

Article 2.6.7.24.

Veterinary Administrations of importing countries should require:

for litter and manure (from pigs)

the presentation of an international veterinary certificate attesting that the products:
Appendix XIV (contd)

1) come from a country or zone free of CSF in domestic and wild pigs; or

2) come from establishments situated in a country or zone free of CSF in domestic pigs but with infection in wild pigs, but not located in a CSF control area; or

3) have been processed in an establishment approved by the Veterinary Administration for export purposes and regularly inspected by the Veterinary Authority so as to ensure the destruction of the CSF virus.

-- text deleted
Appendix XV

APPENDIX X.X.X

GUIDELINES FOR THE SURVEILLANCE OF CLASSICAL SWINE FEVER

Article X.X.X.1.

Introduction

This Appendix defines the principles and provides a guide for the surveillance of classical swine fever (CSF) in accordance with Appendix 3.8.1., applicable to countries seeking recognition of freedom from CSF. This may be for the entire country or a zone within the country. Guidance for countries seeking reestablishment of freedom from CSF for the whole country or a zone, following an outbreak, as well as guidelines for demonstrating the maintenance of CSF free status are also provided. This Appendix complements Chapter 2.6.7.

The impact and epidemiology of CSF differ widely in different regions of the world and therefore it is impossible to provide specific guidelines for all situations. It is axiomatic that the surveillance strategies employed for demonstrating freedom from CSF at an acceptable level of confidence will need to be adapted to the local situation. For example, the approach must be tailored in order to prove freedom from CSF for a country or zone where wild pigs provide a potential reservoir of infection, or where CSF is present in adjacent countries. The method must examine the epidemiology of CSF in the region concerned and adapt to the specific risk factors encountered. This should include provision of scientifically based supporting data. There is therefore latitude available to Member Countries to provide a well-reasoned argument to prove that absence of CSFV infection is assured at an acceptable level of confidence.

Surveillance for CSF should be in the form of a continuing programme designed to establish that the whole country or zone is free from CSFV infection. Consideration should be given to the specific characteristics of CSF epidemiology which include: the role of swill feeding and the impact of different production systems on disease spread, the role of semen in transmission of the virus, the lack of pathognomonic gross lesions and clinical signs, the frequency of clinically inapparent infections, the occurrence of persistent and chronic infections, and the genotypic, antigenic, and virulence variability exhibited by different strains of CSFV. Serological cross-reactivity with other pestiviruses has to be taken into consideration when interpreting data from serological surveys. A common route by which ruminant pestiviruses can infect pigs is the use of vaccines contaminated with bovine viral diarrhoea virus (BVDV).

For the purpose of this Appendix virus infection means presence of CSFV as demonstrated directly by virus isolation, the detection of virus antigen or virus nucleic acid, or indirectly by seroconversion which is not the result of vaccination.

Article X.X.X.2.

General conditions and methods

1) A surveillance system in accordance with Appendix 3.8.1. should be under the responsibility of the Veterinary Administration. A procedure should be in place for the rapid collection and transport of samples to an accredited laboratory as described in the Terrestrial Manual.
Appendix XV (contd)

2) The CSF surveillance programme should:
 a) include an early warning system throughout the production, marketing and processing chain for
 reporting suspicious cases. Farmers and workers, who have day-to-day contact with livestock, as
 well as diagnosticians, should report promptly any suspicion of CSF to the Veterinary Authority.
 They should be supported directly or indirectly (e.g. through private veterinarians or veterinary
 para-professionals) by government information programmes and the Veterinary Administration.
 Since many strains of CSFV do not induce pathognomonic gross lesions or clinical signs, cases
 in which CSF cannot be ruled out should be immediately investigated employing clinical,
 pathological, and laboratory diagnosis. This requires that sampling kits and other equipment are
 available to those responsible for surveillance. Personnel responsible for surveillance should be
 able to call for assistance from a team with expertise in CSF diagnosis, epidemiological
 evaluation, and control;
 b) implement, when relevant, regular and frequent clinical inspections and serological testing of
 high-risk groups of animals (for example, where swill feeding is practised), or those adjacent to a
 CSF infected country or zone (for example, bordering areas where infected wild pigs are
 present).

An effective surveillance system will periodically identify suspicious cases that require follow up and
investigation to confirm or exclude that the cause of the condition is CSFV. The rate at which such
suspicious cases are likely to occur will differ between epidemiological situations and cannot
therefore be reliably predicted. Recognitions for freedom from CSFV infection should, as a
consequence, provide details of the occurrence of suspicious cases and how they were investigated
and dealt with. This should include the results of laboratory testing and the control measures to
which the animals concerned were subjected during the investigation (quarantine, movement stand-
still orders, etc.).

Article X.X.X.3.

Surveillance strategies

1) Introduction

The target population for surveillance aimed at identification of disease and infection should include
domestic and wild pig populations within the country or zone to be recognised as free from CSFV
infection. Such surveillance may involve opportunistic testing of samples submitted for other
purposes, but a more efficient and effective strategy is one which includes targeted surveillance.

Depending on the local epidemiological situation, targeted surveillance could be considered as more
effective than a randomized surveillance strategy. Surveillance is targeted to the pig population which
presents the highest risk of infection (for example, swill fed farms, pigs reared outdoors, farms in
proximity to infected wild pigs). Each country will need to identify its individual risk factors. These
may include: temporal and spatial distribution of past outbreaks, pig movements and demographics,
etc.

For reasons of cost, the longevity of antibody levels, as well as the existence of clinically inapparent
infections and difficulties associated with differential diagnosis of other diseases, serology is often the
most effective and efficient surveillance methodology. In some circumstances, which will be
discussed later, clinical and virological surveillance may also have value.

The country should justify the surveillance strategy chosen as adequate to detect the presence of
CSFV infection in accordance with Appendix 3.8.1. and the epidemiological situation. Cumulative
survey results in combination with the results of passive surveillance, over time, will increase the level
of confidence in the surveillance strategy. If a Member Country wishes to apply for recognition by
other Member Countries of a specific zone within the country as being free from CSFV infection, the
design of the surveillance strategy and the basis for any sampling process would need to be aimed at
the population within the zone.
For random surveys, the design of the sampling strategy will need to incorporate epidemiologically appropriate design prevalence. The sample size selected for testing will need to be large enough to detect infection if it were to occur at a predetermined minimum rate. The sample size and expected disease prevalence determine the level of confidence in the results of the survey. The country must justify the choice of design prevalence and confidence level based on the objectives of surveillance and the epidemiological situation, in accordance with Appendix 3.8.1. Selection of the design prevalence in particular clearly needs to be based on the prevailing or historical epidemiological situation.

Irrespective of the survey design selected, the sensitivity and specificity of the diagnostic tests employed are key factors in the design, sample size determination and interpretation of the results obtained. Ideally, the sensitivity and specificity of the tests used should be validated for the vaccination/infection history and production class of animals in the target population.

Irrespective of the testing system employed, the surveillance system design should anticipate the occurrence of false positive reactions. This is especially true of the serological diagnosis of CSF because of the recognized cross-reactivity with ruminant pestiviruses. There needs to be an effective procedure for following up positives to ultimately determine with a high level of confidence, whether or not they are indicative of CSFV infection. This should involve confirmatory and differential tests for pestiviruses, as well as further investigations concerning the original sampling unit as well as animals which may be epidemiologically linked.

2) Clinical and virological surveillance

Beyond their role in targeted surveillance, clinical and virological surveillance for CSF have two aims: a) to shorten the period between introduction of CSF virus into a disease free country or zone and its detection, and b) to confirm that no unnoticed outbreaks have occurred.

One element of clinical surveillance involves the detection of clinical signs of CSF by close physical examination of susceptible animals. The spectrum of disease signs and gross pathology seen in CSF infections, along with the plethora of other agents that can mimic CSF, renders the value of clinical examination alone somewhat inefficient as a surveillance tool. Nevertheless, clinical presentation should not be ignored as a tool for early detection; in particular, any cases where clinical signs or lesions consistent with CSF are accompanied by high morbidity and/or mortality should be investigated without delay. In CSFV infections involving low virulence strains, high mortality may only be seen in young animals.

In the past, clinical identification of cases was the cornerstone of early detection of CSF. However, emergence of low virulence strains of CSF, as well as new diseases - in particular post-weaning multisystemic wasting syndrome and porcine dermatitis and nephropathy syndrome have made such reliance less effective, and, in countries where such diseases are common, can add significant risk of masking the presence of CSF. In zones or countries where such diseases exist, careful clinical and virological surveillance of such cases should be applied.

Clinical signs and pathology of CSF infection will also vary considerably, depending on the strain of virus as well as host factors, such as age, nutrition and health status. These factors, along with the compounding effects of concurrent infections and disease caused by ruminant pestiviruses, dictate the need for laboratory testing in order to clarify the status of CSF suspects detected by clinical monitoring. The difficulties in detecting chronic disease manifested by non-specific clinical signs and delayed seroconversion and seronegativity, in persistently infected piglets, both of which may be clinically normal, makes virological investigation essential. As part of a herd investigation, such animals are likely to be in a minority and would not confound a diagnosis based on serology. However, individually, or as part of recently mixed batches, such animals may escape detection by this method. A holistic approach to investigation, taking note of herd history, pig, personnel and vehicle movements and disease status in neighbouring zones or countries, can also assist in targeting surveillance in order to increase efficiency and enhance the likelihood of early detection.
Appendix XV (contd)

The labour-intensive nature of clinical, pathological, and virological investigations, along with the smaller ‘window of opportunity’ inherent in virus, rather than antibody detection, has, in the past, resulted in greater emphasis being placed on mass serological screening as the best method for surveillance. However, surveillance based on clinical and pathological inspection and virological testing should not be underrated. If targeted at high risk groups in particular, it provides an opportunity for early detection that can considerably reduce the subsequent spread of disease. Herds predominated by adult animals, such as nucleus herds and artificial insemination studs, are particularly useful groups to monitor, since infection by low virulence viruses in such groups may be clinically inapparent, yet the degree of spread may be high.

Clinical and virological monitoring may also provide a high level of confidence of rapid detection of disease if a sufficiently large number of clinically susceptible animals is examined. In particular, molecular detection methods are increasingly able to offer the possibility of such large-scale screening for the presence of virus, at reasonable cost.

Wild pigs and, in particular, those with a wholly free-living existence, rarely present the opportunity for clinical observation, but should form part of any surveillance scheme and should ideally be monitored for virus as well as antibody.

Vaccine design and diagnostic methodologies, and in particular, methods of virus detection, are increasingly reliant on up-to-date knowledge of the molecular, antigenic and other biological characteristics of viruses currently circulating and causing disease. Furthermore, epidemiological understanding of the pathways of spread of CSFV can be greatly enhanced by molecular analyses of viruses in endemic areas and those involved in outbreaks in disease free areas. It is therefore essential that CSFV isolates are sent regularly to the regional OIE Reference Laboratory for genetic and antigenic characterisation.

3) Serological surveillance

Serological surveillance aims at the detection of antibodies against CSFV. Positive CSFV antibody test results can have five possible causes:

a) natural infection with CSFV;

b) legal or illegal vaccination against CSF;

c) maternal antibodies derived from an immune sow (maternal antibodies) are usually found only up to 4.5 months of age but in some individuals, maternal antibodies can be detected for considerably longer periods;

d) cross reactions with other pestiviruses;

e) non-specific reactors.

The infection of pigs with other pestiviruses may complicate a surveillance strategy based on serology. Antibodies to bovine viral diarrhoea virus (BVDV) and Border disease virus (BDV) can give positive results in serological tests for CSF, due to common antigens. Such samples will require differential tests to confirm their identity. Although persistently infected immunotolerant pigs are themselves seronegative, they continuously shed virus, so the prevalence of antibodies at the herd level will be high. Chronically infected pigs may have undetectable or fluctuating antibody levels.
It may be possible to use sera collected for other survey purposes for CSF surveillance. However, the principles of survey design described in this Appendix and the requirement for statistical validity should not be compromised.

The discovery of clustering of seropositive reactions should be foreseen. It may reflect any of a series of events, including but not limited to the demographics of the population sampled, vaccinal exposure or the presence of infection by field strains or other pestiviruses. Because clustering may signal field strain infection, the investigation of all instances must be incorporated in the survey design. Clustering of positive animals is always epidemiologically significant and therefore should be investigated.

In countries or zones that are moving towards freedom, sera surveillance can provide valuable information on the disease status and efficacy of any control programme. Targeted sera surveillance of young stock will indicate whether newly circulating virus is present, although the presence of maternal antibody will also need to be considered. If conventional attenuated vaccine is currently being used or has been used in the recent past, serology aimed at detecting the presence of field virus will likewise need to be targeted at unvaccinated animals and after the disappearance of maternal antibody. General usage in such situations may also be used, to assess levels of vaccine coverage.

Vaccines also exist which, when used in conjunction with dedicated serological tests, may allow discrimination between vaccinal antibody and that induced by field infection. Such tools, described in the Terrestrial Manual, will need to be fully validated. They do not confer the same degree of protection as that provided by conventional vaccines, particularly with respect to preventing transplacental infections. Furthermore, sera surveillance using such differentiation requires cautious interpretation on a herd basis.

The results of random or targeted serological surveys are important in providing reliable evidence that no CSFV infection is present in a country or zone. It is therefore essential that the survey be thoroughly documented.

Article X.X.X.4.

Country or zone free of CSF in domestic and wild pigs

1) Historically free status

The free status should be reviewed whenever evidence emerges to indicate that changes which may alter the underlying assumption of continuing historical freedom, has occurred. Such changes include but are not limited to:

a) an emergence, or an increase in the prevalence of CSF in countries or zones from which live pigs or products are imported;

b) an increase in the volume of imports or a change in their country or zone of origin;

c) an increase in the prevalence of CSF in the domestic or wild pigs of adjacent countries or zones;

d) an increased entry from, or exposure to, wild pig populations of adjacent countries or zones.
Appendix XV (contd)

2) Free status as a result of an eradication programme

In addition to the general conditions described in Chapter 2.6.7., a Member Country seeking recognition of CSF freedom for the country or a zone, whether or not vaccination had been practised, should provide evidence for the existence of an effective surveillance programme. The strategy and design of the surveillance programme will depend on the prevailing epidemiological circumstances and will be planned and implemented according to general conditions and methods in this Appendix, to demonstrate the absence of CSFV infection, in domestic and wild pig populations. This requires the support of a national or other laboratory able to undertake identification of CSFV infection through virus detection and serological tests described in the Terrestrial Manual.

Article X.X.X.5.

Country or zone free of CSF in domestic pigs but with infection in the wild pig population

1) In addition to the general conditions described in Chapter 2.6.7., a Member Country seeking recognition of CSF freedom for the country or a zone, whether or not vaccination had been practised, should provide evidence for the existence of an effective surveillance programme. The strategy and design of the surveillance programme will depend on the prevailing epidemiological circumstances and will be planned and implemented according to general conditions and methods in this Appendix, to demonstrate the absence of CSFV infection, in domestic and wild pig populations. This requires the support of a national or other laboratory able to undertake identification of CSFV infection through virus detection and serological tests described in the Terrestrial Manual.

2) The objective of surveillance in this instance is to demonstrate that the two subpopulations are effectively separated by measures that ensure the biosecurity of domestic pigs. To this end, a biosecurity programme which includes but is not limited to the following provisions should be implemented:

a) a programme for the management of CSF in wild pigs;
b) delineation of CSF wild pig control areas around every CSF case reported in wild pigs;
c) assessment of the presence and mitigative role of natural boundaries;
d) documentation of the ecology of the wild pig population;
e) proper containment of domestic pigs;
f) control of movement of vehicles with cleaning and disinfection as appropriate;
g) control of personnel entering into the establishments and awareness of risk of fomite spread;
h) prohibition of introduction to the establishments of hunted animals and products;
i) registry of animal movements into and out of establishments;
j) information and training programmes for farmers, hunters, processors, veterinarians, etc.

3) The biosecurity programme implemented would also require internal and external monitoring by the Veterinary Authorities. These elements should include but are not limited to:

a) periodic clinical and serological monitoring of herds in the country or zone, and adjacent wild pig populations following these guidelines;
b) herd registration;
c) official accreditation of biosecurity programme;
d) periodic monitoring and review.
4) Monitoring the CSF status of wild populations will be of value in assessing the degree of risk they pose to the CSF free domestic population. The design of a monitoring system for wild pigs is dependent on several factors such as the organization of the Veterinary Services and resources available. The occurrence of CSF in wild pigs may vary considerably among countries. Surveillance design should be scientifically based and the Member Country must justify its choice of design prevalence and level of confidence based on Appendix 3.8.1.

5) The geographic distribution and approximate size of wild pig populations need to be assessed as a prerequisite for designing a monitoring system. Sources of information may include wildlife conservation organizations, hunter associations and other available sources. The objective of a surveillance programme when the disease is already known to exist should be to determine the geographic distribution and the extent of the infection.

Article X.X.X.6.

Recovery of free status

1) Countries or zones re-seeking freedom from CSF following an outbreak

In addition to the general conditions described in Chapter 2.6.7., a country re-seeking country or zone freedom from CSF should show evidence of an active surveillance programme for CSF as well as absence of CSFV infection.

Populations under this surveillance programme should include, but not be limited to:

a) establishments in the area of the outbreak;

b) establishments epidemiologically linked to the outbreak;

c) animals used to re-populate affected establishments and any establishments where contiguous culling is carried out;

d) wild pig populations in the area of the outbreak.

In all circumstances, a Member Country re-seeking country or zone freedom from CSF with vaccination or without vaccination should report the results of an active and passive surveillance programme in which the pig population undergoes regular clinical, pathological, virological, and/or serological examination, planned and implemented according to general conditions and methods in these guidelines. The surveillance should be based on a statistically representative sample of the populations at risk.

2) Country or zone free of CSF in wild pigs

While the same principles apply, surveillance in wild pigs presents challenges beyond those encountered in domestic populations in each of the following areas:

a) determination of the distribution, size and movement patterns associated with the wild pig population;

b) assessment of the possible presence of CSF within the population;

c) determination of the practicability of establishing zones.
Appendix XV (contd)

The design of a monitoring system for wild pigs is dependent on several factors such as the organization of the Veterinary Services and resources available. The geographic distribution and approximate size of wild pig populations need to be assessed as a prerequisite for designing a monitoring system. Sources of information may include wildlife conservation organisations, hunter associations and other available sources. The objective of a surveillance programme is to determine the geographic distribution and estimation of target population.

Estimates of wild pig population can be made using advanced methods (radio tracking, linear transect method, capture/recapture) or traditional methods based on the number of animals that can be hunted to allow for natural restocking (hunting bags).

For implementation of the monitoring programme, it will be necessary to define the limits of the territory over which wild pigs range in order to delineate the epidemiological units within the monitoring programme. It is often difficult to define epidemiological units for wild animals. The most practical approach is based on natural and artificial barriers.

The monitoring programme should also include animals found dead, road kills, animals showing abnormal behaviour or exhibiting gross lesions during dressing.

There may be situations where a more targeted surveillance programme can provide additional assurance. The criteria to define high risk areas for targeted surveillance can be:

– areas with past history of CSF;
– sub-regions with high wild pig density;
– border regions with CSF affected countries or zones;
– areas of contact between sub-populations;
– picnic and camping areas;
– around farms with free-ranging pigs;
– special risk areas determined by local Veterinary Authorities.
– garbage dumps.
CHAPTER 2.7.12.

HIGHLY PATHOGENIC AVIAN INFLUENZA

Article 2.7.12.1.
For the purposes of the Terrestrial Code, the incubation period for highly pathogenic avian influenza (HPAI) shall be 21 days.

Standards for diagnostic tests are described in the Terrestrial Manual.

Article 2.7.12.2.

HPAI free country

A country may be considered free from HPAI when it has been shown that HPAI has not been present for at least the past 3 years.

This period shall be 6 months after the slaughter of the last affected animal for countries in which a stamping out policy is practised with or without vaccination against HPAI.

Article 2.7.12.3.

HPAI infected zone

A zone shall be considered as infected with HPAI until:

1) at least 21 days have elapsed after the confirmation of the last case and the completion of a stamping out policy and disinfection procedures, or

2) 6 months have elapsed after the clinical recovery or death of the last affected animal if a stamping out policy was not practised.

Article 2.7.12.4.

Veterinary Administrations of importing countries should require similar arrangements to those provided in Chapter 2.7.13. (Newcastle disease) of the Terrestrial Code for the following commodities:

1) domestic and wild-birds;

2) day-old-birds;

3) hatching eggs;

4) semen of domestic and wild-birds;

5) fresh meat of domestic and wild-birds;

6) products of animal origin (from birds) intended for use in animal feeding or for agricultural or industrial use;

7) pathological material and biological products (from birds) which have not been processed to ensure the destruction of the HPAI virus.
Appendix XVI (contd)

Article 2.7.12.5.

1) For the purposes of the Terrestrial Code, notifiable avian influenza in its notifiable form (NAI) is defined as an infection of poultry caused by any influenza A virus of the H5 or H7 subtypes or by any AI virus with an intravenous pathogenicity index (IVPI) greater than 1.2 (or as an alternative at least 75% mortality) as described below. NAI viruses can be divided into highly pathogenic notifiable avian influenza (HPNAI) and low pathogenicity notifiable avian influenza (LPNAI):

 a) HPNAI viruses have an IVPI in 6-week-old chickens greater than 1.2 or, as an alternative, cause at least 75% mortality in 4-to 8-week-old chickens infected intravenously. H5 and H7 viruses which do not have an IVPI of greater than 1.2 or cause less than 75% mortality in an intravenous lethality test should be sequenced to determine whether multiple basic amino acids are present at the cleavage site of the haemagglutinin molecule (HA0); if the amino acid motif is similar to that observed for other HPNAI isolates, the isolate being tested should be considered as HPNAI.

 b) LPNAI are all influenza A viruses of H5 and H7 subtype that are not HPNAI viruses.

2) Poultry is defined as ‘all birds reared or kept in captivity for the production of meat or eggs for consumption, for the production of other commercial products, for restocking supplies of game, or for breeding these categories of birds’.

3) For the purpose of international trade, this chapter deals not only with the occurrence of clinical signs caused by NAI virus, but also with the presence of infection with NAI virus in the absence of clinical signs.

4) The following defines the occurrence of infection with NAI virus:

 a) HPNAI virus has been isolated and identified as such or specific viral RNA specific for HPNAI has been detected in poultry or a product derived from poultry; or

 b) LPNAI virus has been isolated and identified as such or specific viral RNA specific for LPNAI has been detected in poultry or a product derived from poultry; or

 c) antibodies to H5 or H7 subtype of NAI virus that are not a consequence of vaccination, nor indicative of a non-specific reaction, have been detected in poultry; in such cases, virus isolation should be attempted to establish whether the serological positivity is due to LPNAI or HPNAI. If appropriate samples are not available or if results are negative, a thorough epidemiological investigation including further sampling and testing should be carried out to identify the type or exclude the presence of NAI infection. In the case of isolated serological positive results, NAI infection may be ruled out on the basis of a thorough epidemiological investigation that does not demonstrate further evidence of NAI infection.
Appendix XVI (contd)

For the purposes of this *Terrestrial Code*, ‘NAI free establishment’ means an establishment in which there has been no clinical sign of NAI for the past 21 days and is not situated within 3 kilometres of any establishment infected with HPNAI and within one kilometre of any establishment infected with LPNAI.

For the purposes of the *Terrestrial Code*, ‘NAI free establishment’ means an establishment in which the poultry have shown no evidence of NAI infection, based on surveillance in accordance with Appendix XXX.

For the purposes of the *Terrestrial Code*, the *incubation period* for NAI shall be 21 days.

Standards for diagnostic tests are, including pathogenicity testing, described in the *Terrestrial Manual*. Any vaccine used should comply with the standards described in the *Terrestrial Manual*.

Article 2.7.12.6.

(under study)

The NAI status of a country, a *zone* or a *compartment* can be determined on the basis of the following criteria:

1) the outcome of a risk assessment identifying all potential factors for NAI occurrence and their historic perspective;

2) NAI is notifiable in the whole country, an on-going NAI awareness programme is in place, and all notified suspect occurrences of NAI are subjected to field and, where applicable, laboratory investigations;

3) appropriate surveillance is in place to demonstrate the presence of infection in the absence of clinical signs in poultry, and the risk posed by birds other than poultry; this may be achieved through an NAI surveillance programme in accordance with Appendix XXX, this Chapter and Chapter 1.3.6.

Article 2.7.12.7.

(under study)

NAI free country, zone or compartment

A country, *zone* or *compartment* may be considered free from NAI when it has been shown that neither HPNAI nor LPNAI infection has been present in the country, *zone* or *compartment* for the past 12 months, based on surveillance in accordance with Appendix XXX. The surveillance may need to be adapted to parts of the country or existing *zones* or *compartments* depending on historical or geographical factors, industry structure, population data, or proximity to recent outbreaks.

If infection has occurred in a previously free country, *zone* or *compartment*, free status can be regained:

1) in the case of HPNAI infections, 3 months after a *stamping out policy* (including *disinfection* of all affected establishments) is applied, providing that surveillance in accordance with Appendix XXX has been carried out during that three-month period.

2) in the case of LPNAI infections, poultry may be kept for slaughter for human consumption subject to specified conditions or a *stamping out policy* applied; in either case, 3 months after the *disinfection* of all affected establishments, providing that surveillance in accordance with Appendix XXX has been carried out during that three-month period.
Appendix XVI (contd)

A country or zone/compartment may be considered free from NAI when it has been shown that NAI infection has not been present for the past 12 months. If infected poultries are slaughtered, this period shall be 3 months after the slaughter of the last infected poultry and disinfection of all affected establishments.

The NAI status should be determined by an ongoing surveillance and monitoring programme (carried out in conformity with the provisions of Chapter 1.3.6.) based on virus isolation, virus detection or serology. The programme may need to be adapted to target parts of the country or zone/compartment at a higher risk due to historical or geographical factors, population data, or proximity to recent outbreaks.

Freedom of infection in a country or zone can be demonstrated with random and/or targeted serological surveillance at a minimum interval of 6 months designed to provide at least a 95% level of confidence of detecting a prevalence of NAI infected enterprises of 1%. Freedom of infection in a compartment can be demonstrated with an ongoing surveillance programme designed to provide at least a 95% level of confidence of detecting a prevalence of NAI infection of 10%. Each establishment should be sampled to provide a 95% level of confidence of detecting a prevalence of NAI of 25%. For commercial ducks the surveillance programme should be based on virus isolation or detection in the absence of validated serological methods.

In the case of a country or zone in which vaccination is being conducted, the ongoing surveillance and monitoring programme (carried out in conformity with the provisions of Chapter 1.3.6.) based on virus isolation, virus detection or serology should be carried out on all vaccinated flocks at a minimum interval of 6 months. In each vaccinated flock, the number of birds to be tested should provide at least a 95% level of confidence of detecting a prevalence of NAI infection of 25%. In the case of a compartment in which vaccination is being conducted, the ongoing surveillance and monitoring programme (carried out in conformity with the provisions of Chapter 1.3.6.) based on virus isolation, virus detection or serology should be carried out to provide at least a 95% level of confidence of detecting a prevalence of NAI infection of 10%. If a serological test is used, it should be able to distinguish vaccinated birds from infected birds. Additional security should be provided by the use of identifiable sentinel birds which can be clinically inspected or tested to help identify field infections in vaccinated flocks.

Article 2.7.12.7.bis

HPNAI free country, zone or compartment

A country, zone or compartment may be considered free from HPNAI when it has been shown that HPNAI infection has not been present in the country, zone or compartment for the past 12 months, although its LPNAI status may be unknown. When, based on surveillance in accordance with Appendix XXX, it does not meet the criteria for freedom from NAI but any NAI virus detected has not been identified as HPNAI virus. The surveillance may need to be adapted to parts of the country or zones/compartments depending on historical or geographical factors, industry structure, population data, or proximity to recent outbreaks.

If infection has occurred in a previously free country, zone or compartment, free status can be regained 3 months after a stamping out policy (including disinfection of all affected establishments) is applied, providing that surveillance in accordance with Appendix XXX has been carried out during that 3-month period.
Appendix XVI (contd)

Article 2.7.12.8.
(under study)

When importing from an NAI free country, zone or compartment, Veterinary Administrations should require:

for live poultry (other than day-old poultry)

the presentation of an international veterinary certificate attesting that:

1) the poultry showed no clinical sign of NAI on the day of shipment;
2) the poultry were kept in an NAI free country, zone or compartment since they were hatched or for the past 21 days;
2)bis the required surveillance has been carried out on the establishment within the past 21 days.
3) either have not been vaccinated against NAI, or have been vaccinated and the date of vaccination and the details of the vaccine are stated.

Information concerning the vaccination status of the poultry (including the dates of vaccination and the vaccine used) should be included in the veterinary certificate.

Article 2.7.12.9.
(under study)

Regardless of the NAI status of the country, zone or compartment of origin, Veterinary Administrations should require:

for live birds other than poultry

the presentation of an international veterinary certificate attesting that the birds:

1) showed no clinical sign of infection with a virus which would be considered NAI in poultry on the day of shipment;
2) were kept in isolation approved by the Veterinary Services since they were hatched or for the 21 days prior to shipment and showed no clinical sign of infection with a virus which would be considered NAI in poultry during the isolation period;
3) were subjected to a diagnostic test 7 to 14 days prior to shipment to demonstrate freedom from infection with a virus which would be considered NAI in poultry; and
4) are transported in new containers.

Article 2.7.12.10.
(under study)

When importing from an NAI free country, zone or compartment, Veterinary Administrations should require:

for day-old live poultry

the presentation of an international veterinary certificate attesting that the poultry:

1) were kept in an NAI free country, zone or compartment since they were hatched;
2) were derived from parent flocks which had been kept in an NAI free country, zone or compartment for 21 days prior to and at the time of the collection of the eggs;
Appendix XVI (contd)

3) and/or the parent flock had/had not been vaccinated and, if vaccinated, the date of vaccination and the details of the vaccine are stated.

Information concerning the vaccination status of the poultry and the parent flocks (including the dates of vaccination and the vaccine used) should be included in the veterinary certificate.

Article 2.7.12.10.bis

When importing from an HPNAI free country, zone or compartment, Veterinary Administrations should require:

for day-old live poultry

the presentation of an international veterinary certificate attesting that the poultry:

1) were kept in an HPNAI free country, zone or compartment since they were hatched;

2) were derived from parent flocks which had been kept in an NAI free establishment for 21 days prior to and at the time of the collection of the eggs;

3) are transported in new containers.

Information concerning the vaccination status of the poultry and the parent flocks (including the dates of vaccination and the vaccine used) should be included in the veterinary certificate.

Article 2.7.12.11.

(under study)

When importing from an NAI free country, zone or compartment, Veterinary Administrations should require:

for hatching eggs

the presentation of an international veterinary certificate attesting that the eggs:

1) came from an NAI free country, zone or compartment;

2) were derived from parent flocks which had been kept in an NAI free country, zone or compartment for 21 days prior to and at the time of the collection of the eggs.

3) were derived from parent flocks which had not been vaccinated against NAI, or which had been vaccinated against NAI and the date of vaccination and the details of the vaccine are stated.

Information concerning the vaccination status of the parent flocks (including the dates of vaccination and the vaccine used) should be included in the veterinary certificate.

Article 2.7.12.11.bis

When importing from a HPNAI free country, zone or compartment, Veterinary Administrations should require:

for hatching eggs

the presentation of an international veterinary certificate attesting that the eggs:
Appendix XVI (contd)

1) came from an HPNAI free country, zone or compartment;
2) were derived from parent flocks which had been kept in an NAI free establishment for 21 days prior to and at the time of the collection of the eggs;
3) are transported in new packing material.

Information concerning the vaccination status of the parent flocks (including the dates of vaccination and the vaccine used) should be included in the veterinary certificate.

Article 2.7.12.12.
(under study)

When importing from an NAI free country, zone or compartment, Veterinary Administrations should require:

for eggs for human consumption

the presentation of an international veterinary certificate attesting that the eggs come from an NAI free country, zone or compartment.

Article 2.7.12.13.
(under study)

When importing from a HPNAI free country, zone or compartment, Veterinary Administrations should require:

for eggs for human consumption

the presentation of an international veterinary certificate attesting that the eggs:
1) come from a country, zone or compartment free from HPNAI infection; and
2) come from establishments in which there has been no evidence of NAI in the past 21 days;
3) are transported in new disposable packing material.

Article 2.7.12.14.
(under study)

When importing from a country or zone/compartment not known to be free from HPNAI, Veterinary Administrations should require:

for eggs for consumption

the presentation of an international veterinary certificate attesting that the entire consignment of eggs comes from birds:
1) which have been kept in an NAI free establishment;
2) which have been tested serologically or by virus detection to give a 95% probability of detecting a 5% prevalence of NAI infection, every 21 days, with negative results.
Appendix XVI (contd)

Article 2.7.12.15.
(under study)

When importing from an NAI free country, zone or compartment, Veterinary Administrations should require:

for egg products

the presentation of an international veterinary certificate attesting that the egg products come from, and were processed in, an NAI free country, zone or compartment.

Article 2.7.12.16.
(under study)

When importing from a country or zone/compartment free from HPNAI infection, Veterinary Administrations should require:

for egg products

the presentation of an international veterinary certificate attesting that the egg products come from, and were processed in a country or zone/compartment free from HPNAI infection.

Article 2.7.12.17.
(under study)

Regardless of the NAI status of the country, zone or compartment of origin When importing from a country, zone or compartment not known to be free from HPNAI, Veterinary Administrations should require:

for egg products

the presentation of an international veterinary certificate attesting that the egg products:

1) are derived from eggs for consumption which meet the requirements of Articles 2.7.12.11, 2.7.12.11.bis, 2.7.12.12., or 2.7.12.13. or 2.7.12.14.; or
2) were processed to ensure the destruction of NAI virus (under study), and the necessary precautions were taken after processing to avoid contact of the commodity with any source of NAI virus.

Article 2.7.12.18.
(under study)

When importing from an NAI free country, zone or compartment, Veterinary Administrations should require:

for poultry semen

the presentation of an international veterinary certificate attesting that the donor poultry:

1) showed no clinical sign of NAI on the day of semen collection;
2) were kept in an NAI free country, zone or compartment for the 21 days prior to and at the time of semen collection.
Appendix XVI (contd)

Article 2.7.12.18.bis

When importing from a HPNAI free country, zone or compartment, Veterinary Administrations should require:

for poultry semen

the presentation of an international veterinary certificate attesting that the donor poultry:

1) came from an HPNAI free country, zone or compartment;
2) were kept in an NAI free establishment for 21 days prior to and at the time of semen collection.

Information concerning the vaccination status of the donor flocks (including the dates of vaccination and the vaccine used) should be included in the veterinary certificate.

Article 2.7.12.19.
(under study)

Regardless of the NAI status of the country, zone or compartment of origin, Veterinary Administrations should require:

for semen of birds other than poultry

the presentation of an international veterinary certificate attesting that the donor birds:

1) were kept in isolation approved by the Veterinary Services for the 21 days prior to semen collection;
2) showed no clinical sign of infection with a virus which would be considered NAI in poultry during the isolation period;
3) were tested between 7 and 14 days prior to semen collection and shown to be free of NAI infection.

Article 2.7.12.20.
(under study)

When importing from an NAI free country, zone or compartment, Veterinary Administrations should require:

for fresh meat and meat products of poultry, and poultry viscera

the presentation of an international veterinary certificate attesting that the entire consignment of fresh meat comes from birds:

1) which have been kept in an NAI free country, zone or compartment since they were hatched or for the past 21 days;
2) which have been slaughtered in an approved abattoir and have been subjected to ante-mortem and post-mortem inspections for NAI with favourable results.

Article 2.7.12.21.
(under study)

When importing from a HPNAI free country, zone or compartment, Veterinary Administrations should require:

for fresh meat and meat products of poultry (other than turkey)

the presentation of an international veterinary certificate attesting that the entire consignment of fresh meat comes from birds:
Appendix XVI (contd)

1) which have been kept in an *establishment* since they were hatched or for the past 21 days and in which there has been no *clinical sign* evidence of NAI in the past 21 days; and

2) which have been slaughtered in an *approved abattoir* and have been subjected to ante-mortem and post-mortem inspections for NAI with favourable results.

Article 2.7.12.22.
(under study)

When importing from a country or zone/compartment not known to be free from HPNAI, Veterinary Administrations should require:

for fresh meat and meat products of poultry and poultry viscera (other than turkey)

the presentation of an *international veterinary certificate* attesting that the entire consignment of meat or *meat product* comes from birds:

1) which have been kept in a *free establishment*;

2) which have been tested to give a 95% probability of detecting a 5% prevalence of NAI infection not more than 7 days prior to slaughter using virus detection or virus isolation tests, and serological tests, with negative results in all cases;

3) which have been slaughtered in an *approved abattoir* which has not processed poultry infected with NAI since last cleaned and disinfected, and have been subjected to ante-mortem and post-mortem inspections for NAI with favourable results.

Article 2.7.12.23.
(under study)

When importing from a country or zone/compartment not known to be free from NAI, Veterinary Administrations should require:

for fresh meat and viscera of turkey

the presentation of an *international veterinary certificate* attesting that the entire consignment of meat comes from birds:

1) which have been kept in a *free establishment*;

2) which have been tested to give a 95% probability of detecting a 5% prevalence of NAI infection not more than 7 days prior to slaughter using virus detection or virus isolation tests, and serological tests, with negative results in all cases;

3) which have been slaughtered in an *approved abattoir* which has not processed poultry infected with NAI since last cleaned and disinfected, and have been subjected to ante-mortem and post-mortem inspections for NAI with favourable results.

Article 2.7.12.24.
(under study)

Regardless of the NAI status of the When importing from a country, *zone or compartment of origin* not known to be free from NAI, Veterinary Administrations should require:

for meat products and processed viscera of poultry
Appendix XVI (contd)

the presentation of an international veterinary certificate attesting that:

1) the commodity is derived from fresh meat and/or meat products and/or viscera which meet the requirements of Articles 2.7.12.20. or 2.7.12.21. or 2.7.12.22.; or

2) the commodity has been processed to ensure the destruction of NAI virus;

3) the necessary precautions were taken after processing to avoid contact of the commodity with any source of NAI virus.

Article 2.7.12.25.
(under study)

Regardless of the NAI status of the When importing from an NAI free country, zone or compartment of origin, Veterinary Administrations should require:

for products of poultry origin intended for use in animal feeding, or for agricultural or industrial use

the presentation of an international veterinary certificate attesting that:

1) these commodities come from birds which have been kept in an NAI free country, zone or compartment since they were hatched or for the past 21 days; or

2) these commodities have been processed to ensure the destruction of NAI virus;

3) the necessary precautions were taken to avoid contact of the commodity with any source of NAI virus.

(under study)

When importing from a country or zone/compartment not considered free from NAI, Veterinary Administrations should require:

for meal containing meat and/or feathers and/or bones (from poultry)

the presentation of an international veterinary certificate attesting that:

1) the commodity has been processed to ensure the destruction of the NAI virus;

2) the necessary precautions were taken after processing to avoid contact of the commodity with any source of NAI virus.

Article 2.7.12.27.
(under study)

Regardless of the NAI status of the When importing from an NAI free country, zone or compartment of origin, Veterinary Administrations should require:

for feathers and down (from poultry)

the presentation of an international veterinary certificate attesting that the entire consignment of feathers or down comes from birds which have been kept in an NAI free country or zone/compartment since they were hatched or for the past 21 days.

the presentation of an international veterinary certificate attesting that:

1) these commodities come from birds which have been kept in an NAI free country, zone or compartment since they were hatched or for the past 21 days; or
Appendix XVI (contd)

2) these commodities have been processed to ensure the destruction of NAI virus;

3) the necessary precautions were taken to avoid contact of the commodity with any source of NAI virus.

Article 2.7.12.28.
(under study)

When importing from a country or zone/compartment not known to be free from NAI, Veterinary Administrations should require:

for feathers and down (from poultry)

the presentation of an international veterinary certificate attesting that:

1) the commodity has been processed to ensure the destruction of the NAI virus;

2) the necessary precautions were taken after processing to avoid contact of the commodity with any source of NAI virus.

Article 2.7.12.29.
(under study)

Regardless of the NAI status of the country, zone or compartment, Veterinary Administrations should require for the importation of:

meat or other products from birds other than poultry

the presentation of an international veterinary certificate attesting that:

1) the commodity has been processed to ensure the destruction of NAI virus;

2) the necessary precautions were taken after processing to avoid contact of the commodity with any source of NAI virus.

OIE Terrestrial Animal Health Standards Commission/January 2005
Appendix XVII

APPENDIX 3.X.X.

GUIDELINES FOR THE SURVEILLANCE OF AVIAN INFLUENZA

Article 3.X.X.1.

Introduction

This Appendix defines the principles and provides a guide for the surveillance of notifiable avian influenza (NAI) in accordance with Appendix 3.8.1., applicable to countries seeking recognition for a declared NAI status, with or without the use of vaccination. This may be for the entire country, zone or compartment. Guidance for countries seeking free status following an outbreak and for the maintenance of NAI status are provided. This Appendix complements Chapter 2.7.12.

The presence of NAI in wild birds creates a particular problem. In essence, no country can declare itself free from avian influenza (AI) in wild birds. However, the definition of NAI in Chapter 2.7.12. refers to the infection in poultry only and this Appendix was developed under this definition.

The impact and epidemiology of NAI differ widely in different regions of the world and therefore it is impossible to provide specific guidelines for all situations. It is axiomatic that the surveillance strategies employed for demonstrating freedom from NAI at an acceptable level of confidence will need to be adapted to the local situation. Variables such as the frequency of contacts of poultry with wild birds, different biosecurity levels and production systems and the commingling of different susceptible species including domestic waterfowl require specific surveillance strategies to address each specific situation. It is incumbent upon the country to provide scientific data that explains the epidemiology of NAI in the region concerned and also demonstrates how all the risk factors are managed. There is therefore considerable latitude available to Member Countries to provide a well-reasoned argument to prove that absence of NAI virus (NAIV) infection is assured at an acceptable level of confidence.

Surveillance for NAI should be in the form of a continuing programme designed to establish that the country, zone or compartment, for which application is made, is free from NAIV infection.

Article 3.X.X.2.

General conditions and methods

1) A surveillance system in accordance with Appendix 3.8.1. should be under the responsibility of the Veterinary Administration. In particular:

 a) a formal and ongoing system for detecting and investigating outbreaks of disease should be in place;

 b) a procedure should be in place for the rapid collection and transport of samples from suspect cases of NAI to a laboratory for NAI diagnosis as described in the Terrestrial Manual;

 c) a system for recording, managing and analysing diagnostic and surveillance data should be in place.
Appendix XVII (contd)

2) The NAI surveillance programme should:

a) include an early warning system throughout the production, marketing and processing chain for reporting suspicious cases. Farmers and workers, who have day-to-day contact with poultry, as well as diagnosticians, should report promptly any suspicion of NAI to the Veterinary Authority. They should be supported directly or indirectly (e.g. through private veterinarians or veterinary para-professionals) by government information programmes and the Veterinary Administration. All suspected cases of NAI should be investigated immediately. Where suspicion cannot be resolved by epidemiological and clinical investigation, as is frequently the case with LPNAI virus infections, samples should be taken and submitted to an approved laboratory. This requires that sampling kits and other equipment are available for those responsible for surveillance. Personnel responsible for surveillance should be able to call for assistance from a team with expertise in NAI diagnosis and control. In cases where potential public health implications are suspected, notification to the appropriate public health authorities is essential;

b) implement, when relevant, regular and frequent clinical inspection, serological and virological testing of high-risk groups of animals, such as those adjacent to an NAI infected country, zone or compartment, places where birds and poultry of different origins are mixed, such as live bird markets, poultry in close proximity to waterfowl or other sources of NAIV.

An effective surveillance system will periodically identify suspicious cases that require follow up and investigation to confirm or exclude that the cause of the condition is NAIV. The rate at which such suspicious cases are likely to occur will differ between epidemiological situations and cannot therefore be predicted reliably. Applications for freedom from NAIV infection should, in consequence, provide details of the occurrence of suspicious cases and how they were investigated and dealt with. This should include the results of laboratory testing and the control measures to which the animals concerned were subjected during the investigation (quarantine, movement standstill orders, etc.).

Article 3.X.X.3.

Surveillance strategies

The target population for surveillance aimed at identification of disease and infection should cover all the susceptible poultry species within the country, zone or compartment. Active and passive surveillance for NAI should be ongoing. The frequency of active surveillance should be at least every 6 months. Surveillance should be composed of random and targeted approaches using virological, serological and clinical methods.

The strategy employed may be based on randomised sampling requiring surveillance consistent with demonstrating the absence of NAIV infection at an acceptable level of confidence. The frequency of sampling should be dependent on the epidemiological situation. Random surveillance is conducted using serological tests described in the Terrestrial Manual. Positive serological results should be followed up with virological methods.

Targeted surveillance (e.g. based on the increased likelihood of infection in particular localities or species) may be an appropriate strategy. Virological and serological methods should be used concurrently to define the NAI status of high risk populations.

A country should justify the surveillance strategy chosen as adequate to detect the presence of NAIV infection in accordance with Appendix 3.8.1. and the prevailing epidemiological situation. It may, for example, be appropriate to target clinical surveillance at particular species likely to exhibit clear clinical signs (e.g. chickens). Similarly, virological and serological testing could be targeted to species that may not show clinical signs (e.g. ducks).
If a Member Country wishes to declare freedom from NAIV infection in a specific zone or compartment, the design of the survey and the basis for the sampling process would need to be aimed at the population within the zone or compartment.

For random surveys, the design of the sampling strategy will need to incorporate epidemiologically appropriate design prevalence. The sample size selected for testing will need to be large enough to detect infection if it were to occur at a predetermined minimum rate. The sample size and expected disease prevalence determine the level of confidence in the results of the survey. The applicant country must justify the choice of design prevalence and confidence level based on the objectives of surveillance and the epidemiological situation, in accordance with Appendix 3.8.1. Selection of the design prevalence in particular clearly needs to be based on the prevailing or historical epidemiological situation.

Irrespective of the survey approach selected, the sensitivity and specificity of the diagnostic tests employed are key factors in the design, sample size determination and interpretation of the results obtained. Ideally, the sensitivity and specificity of the tests used should be validated for the vaccination/infection history and the different species in the target population.

Irrespective of the testing system employed, surveillance system design should anticipate the occurrence of false positive reactions. If the characteristics of the testing system are known, the rate at which these false positives are likely to occur can be calculated in advance. There needs to be an effective procedure for following up positives to ultimately determine with a high level of confidence, whether they are indicative of infection or not. This should involve both supplementary tests and follow-up investigation to collect diagnostic material from the original sampling unit as well as flocks which may be epidemiologically linked to it.

The principles involved in surveillance for disease/infection are technically well defined. The design of surveillance programmes to prove the absence of NAIV infection/circulation needs to be carefully followed to avoid producing results that are either insufficiently reliable to be accepted by the OIE or international trading partners, or excessively costly and logistically complicated. The design of any surveillance programme, therefore, requires inputs from professionals competent and experienced in this field.

1) Clinical surveillance

Clinical surveillance aims at the detection of clinical signs of NAI at the flock level. Whereas significant emphasis is placed on the diagnostic value of mass serological screening, surveillance based on clinical inspection should not be underrated. Monitoring of production parameters, such as increased mortality, reduced feed and water consumption, presence of clinical signs of a respiratory disease or a drop in egg production, is important for the early detection of NAIV infection. In some cases, the only indication of LPNAIV infection may be a drop in feed consumption or egg production.

Clinical surveillance and laboratory testing should always be applied in series to clarify the status of NAI suspects detected by either of these complementary diagnostic approaches. Laboratory testing may confirm clinical suspicion, while clinical surveillance may contribute to confirmation of positive serology. Any sampling unit within which suspicious animals are detected should be classified as infected until evidence to the contrary is produced.

Identification of suspect flocks is vital to the identification of sources of NAIV and to enable the molecular, antigenic and other biological characteristics of the virus to be determined. It is essential that NAIV isolates are sent regularly to the regional Reference Laboratory for genetic and antigenic characterization.
Appendix XVII (contd)

2) Virological surveillance

Virological surveillance using tests described in the Terrestrial Manual should be conducted:

a) to monitor at risk populations;

b) to confirm clinically suspect cases;

c) to follow up positive serological results;

d) to test ‘normal’ daily mortality, to ensure early detection of infection in the face of vaccination or in establishments epidemiologically linked to an outbreak.

3) Serological surveillance

Serological surveillance aims at the detection of antibodies against NAIV. Positive NAIV antibody test results can have four possible causes:

a) natural infection with NAIV;

b) vaccination against NAI;

c) maternal antibodies derived from a vaccinated or infected parent flock are usually found in the yolk and can persist in progeny for up to 4 weeks;

d) positive results due to the lack of specificity of the test.

It may be possible to use serum collected for other survey purposes for NAI surveillance. However, the principles of survey design described in these guidelines and the requirement for a statistically valid survey for the presence of NAIV should not be compromised.

The discovery of clusters of seropositive flocks may reflect any of a series of events, including but not limited to the demographics of the population sampled, vaccinal exposure or infection. As clustering may signal infection, the investigation of all instances must be incorporated in the survey design. Clustering of positive flocks is always epidemiologically significant and therefore should be investigated.

If vaccination cannot be excluded as the cause of positive serological reactions, diagnostic methods to differentiate antibodies due to infection or vaccination should be employed.

The results of random or targeted serological surveys are important in providing reliable evidence that no NAIV infection is present in a country, zone or compartment. It is therefore essential that the survey be thoroughly documented.

4) Virological and serological surveillance in vaccinated populations

The surveillance strategy is dependent on the type of vaccine used. The protection against AI is haemagglutinin subtype specific. Therefore, two broad vaccination strategies exist: 1) inactivated whole AI viruses, and 2) haemagglutinin expression-based vaccines.
In the case of vaccinated populations, the surveillance strategy should be based on virological and/or serological methods and clinical surveillance. It may be appropriate to use sentinel birds for this purpose. These birds should be unvaccinated, AI virus antibody free birds and clearly and permanently identified. The interpretation of serological results in the presence of vaccination is described in 3.X.X.6.

Article 3.X.X.4.

Documentation of NAI or HPNAI free status

1) Countries declaring freedom from NAI or HPNAI for the country, zone or compartment

In addition to the general conditions described in Chapter 2.7.12. of the Terrestrial Code, a Member Country declaring freedom from NAI for the entire country, or a zone or a compartment should provide evidence for the existence of an effective surveillance programme. The strategy and design of the surveillance programme will depend on the prevailing epidemiological circumstances and should be planned and implemented according to general conditions and methods described in this Appendix, to demonstrate absence of NAIV infection, during the preceding 12 months in susceptible poultry populations (vaccinated and non-vaccinated). This requires the support of a laboratory able to undertake identification of NAIV infection through virus detection and antibody tests described in the Terrestrial Manual. This surveillance may be targeted to poultry population at specific risks linked to the types of production, possible direct or indirect contact with wild birds, multi-age flocks, local trade patterns including live bird markets, use of possibly contaminated surface water, and the presence of more than one species on the holding and poor biosecurity measures in place.

2) Additional requirements for countries, zones or compartments that practise vaccination

Vaccination to prevent the transmission of HPNAI virus may be part of a disease control programme. The level of flock immunity required to prevent transmission will depend on the flock size, composition (e.g. species) and density of the susceptible poultry population. It is therefore impossible to be prescriptive. The vaccine must also comply with the provisions stipulated for NAI vaccines in the Terrestrial Manual. Based on the epidemiology of NAI in the country, zone or compartment, it may be that a decision is reached to vaccinate only certain species or other poultry subpopulations.

In all vaccinated flocks there is a need to perform virological and serological tests to ensure the absence of virus circulation. The use of sentinel poultry may provide further confidence of the absence of virus circulation. The tests have to be repeated at least every 6 months or at shorter intervals according to the risk in the country, zone or compartment.

Evidence to show the effectiveness of the vaccination programme should also be provided.

Article 3.X.X.5.

Countries, zones or compartments re-declaring freedom from NAI or HPNAI following an outbreak

In addition to the general conditions described in Chapter 2.7.12., a country re-declaring for country, zone or compartment freedom from NAI or HPNAI virus infection should show evidence of an active surveillance programme depending on the epidemiological circumstances of the outbreak to demonstrate the absence of the infection. This will require surveillance incorporating virus detection and antibody tests described in the Terrestrial Manual.
Appendix XVII (contd)

A Member Country declaring freedom of country, zone or compartment after an outbreak of NAI or HPNAI (with or without vaccination) should report the results of an active surveillance programme in which the NAI or HPNAI susceptible poultry population undergoes regular clinical examination and active surveillance planned and implemented according to the general conditions and methods described in these guidelines. The surveillance should at least give the confidence that can be given by a randomized representative sample of the populations at risk.

Article 3.X.X.6.

NAI free establishments within HPNAI free compartments

The declaration of NAI free establishments requires the demonstration of absence of NAIV infection. Birds in these establishments should be randomly tested using virus detection or isolation tests, and serological methods, following the general conditions of these guidelines. The frequency of testing should be based on the risk of infection and at a maximum interval of 21 days.

Article 3.X.X.7.

The use and interpretation of serological and virus detection tests

Poultry infected with NAI virus produce antibodies to haemagglutinin (HA), neuraminidase (NA), nonstructural proteins (NSPs), nucleoprotein/matrix (NP/M) and the polymerase complex proteins. Detection of antibodies against the polymerase complex proteins will not be covered in this Appendix. Tests for NP/M antibodies include direct and blocking ELISA, and agar gel immunodiffusion (AGID) tests. Tests for antibodies against NA include the neuraminidase inhibition (NI), indirect fluorescent antibody and direct ELISA tests. For the HA, antibodies are detected in haemagglutination inhibition (HI) and neutralization (SN) tests. The HI test is reliable in avian species but not in mammals. The SN test can be used to detect subtype specific antibodies to the haemagglutinin and is the preferred test for mammals and some avian species. The AGID test is reliable for detection of NP/M antibodies in chickens and turkeys, but not in other avian species. As an alternative, blocking ELISA tests have been developed to detect NP/M antibodies in all avian species.

The HI and NI tests can be used to subtype AI viruses into 15 haemagglutinin and 9 neuraminidase subtypes. Such information is helpful for epidemiological investigations and in categorization of AI viruses.

Poultry can be vaccinated with a variety of AI vaccines including inactivated whole AI virus vaccines, and haemagglutinin expression-based vaccines. Antibodies to the haemagglutinin confer subtype specific protection. Various strategies can be used to differentiate vaccinated from infected birds including serosurveillance in unvaccinated sentinel birds or specific serological tests in the vaccinated birds.

AI virus infection of unvaccinated birds including sentinels is detected by antibodies to the NP/M, subtype specific HA or NA proteins, or NSP. In poultry vaccinated with haemagglutinin expression-based vaccines, antibodies are detected to the specific HA, but not any of the other AI viral proteins. Infection is evident by antibodies to the NP/M or NSP, or the specific NA protein of the field virus. Poultry vaccinated with inactivated whole AI vaccines may develop low titres of antibodies to NSP, but the titre in infected birds will be markedly higher. Alternatively, usage of a vaccine strain with a different NA subtype than the field virus can allow differentiation of vaccinated from infected birds (DIVA) by detection of subtype specific NA antibodies of the field virus. Vaccines used should comply with the standards of the Terrestrial Manual.

All flocks with seropositive results should be investigated. Epidemiological and supplementary laboratory investigation results should document the status of NAI infection/circulation for each positive flock.
A confirmatory test should have a higher specificity than the screening test and sensitivity at least equivalent than that of the screening test.

Information should be provided on the performance characteristics and validation of tests used.

1) The follow up procedure in case of positive test results if vaccination is used

In case of vaccinated populations, one has to exclude the likelihood that positive test results are indicative of virus circulation. To this end the following procedure should be followed in the investigation of positive serological test results derived from surveillance conducted on NAI-vaccinated poultry. The investigation should examine all evidence that might confirm or refute the hypothesis that the positive results to the serological tests employed in the initial survey were not due to virus circulation. All the epidemiological information should be substantiated and the results should be collated in the final report.

Knowledge of the type of vaccine used is crucial in developing a serological based strategy to differentiate infected from vaccinated animals.

a) Inactivated whole AI virus vaccines can use either homologous or heterologous neuraminidase subtypes between the vaccine and field strains. If poultry in the population have antibodies to NP/M and were vaccinated with inactivated whole AI virus vaccine, the following strategies should be applied:

i) sentinel birds should remain NP/M antibody negative. If positive for NP/M antibodies, indicating AI virus infection, specific HI tests should be performed to identify H5 or H7 AI virus infection;

ii) if vaccinated with inactivated whole AI virus vaccine containing homologous NA to field virus, the presence of antibodies to NSP could be indicative of infection. Sampling should be initiated to exclude the presence of NAIV by either virus isolation or detection of virus specific genomic material or proteins;

iii) if vaccinated with inactivated whole AI virus vaccine containing heterologous NA to field virus, presence of antibodies to the field virus NA or NSP would be indicative of infection. Sampling should be initiated to exclude the presence of NAIV by either virus isolation or detection of virus specific genomic material or proteins.

b) Hemagglutinin expression-based vaccines contain the HA protein or gene homologous to the HA of the field virus. Sentinel birds as described above can be used to detect AI infection. In vaccinated or sentinel birds, the presence of antibodies against NP/M, NSP or field virus NA is indicative of infection. Sampling should be initiated to exclude the presence of NAIV by either virus isolation or detection of virus specific genomic material or proteins.

2) The follow up procedure in case of positive test results indicative of infection for determination of infection due to HPNAI or LPNAI virus

The detection of antibodies indicative of a NAI virus infection as indicated in point a)i) above will result in the initiation of epidemiological and virological investigations to determine if the infections are due to HPNAI or LPNAI viruses.
Appendix XVII (contd)

Virological testing should be initiated in all antibody-positive and at risk populations. The samples should be evaluated for the presence of AI virus, by virus isolation and identification, and/or detection of influenza A specific proteins or nucleic acids (Figure 2). Virus isolation is the gold standard for detecting infection by AI virus and the method is described in the *Terrestrial Manual*. All AI virus isolates should be tested to determine HA and NA subtypes, and *in vivo* tested in chickens and/or sequencing of HA proteolytic cleavage site of H5 and H7 subtypes for determination of classification as HPNAI, LPNAI or LPAI (not notifiable) viruses. As an alternative, nucleic acid detection tests have been developed and validated; these tests have the sensitivity of virus isolation, but with the advantage of providing results within a few hours. Samples with detection of H5 and H7 HA subtypes by nucleic acid detection methods should either be submitted for virus isolation, identification, and *in vivo* testing in chickens, or sequencing of nucleic acids for determination of proteolytic cleavage site as HPNAI or LPNAI viruses. The antigen detection systems, because of low sensitivity, are best suited for screening clinical field cases for infection by Type A influenza virus looking for NP/M proteins. NP/M positive samples should be submitted for virus isolation, identification and pathogenicity determination.

Laboratory results should be examined in the context of the epidemiological situation. Corollary information needed to complement the serological survey and assess the possibility of viral circulation includes but is not limited to:

a) characterization of the existing production systems;
b) results of clinical surveillance of the suspects and their cohorts;
c) quantification of vaccinations performed on the affected sites;
d) sanitary protocol and history of the affected establishments;
e) control of animal identification and movements;
f) other parameters of regional significance in historic NAIV transmission.

The entire investigative process should be documented as standard operating procedure within the epidemiological surveillance programme.
Figure 1 - Schematic representation of laboratory tests for determining evidence of NAI infection through or following serological surveys
Appendix XVII (contd)

Figure 2. - Schematic representation of laboratory tests for determining evidence of NAI infection using virological methods

The above diagram indicates the tests which are recommended for use in the investigation of poultry flocks.

Key:

AGID Agar gel immunodiffusion
DIVA Differentiating infected from vaccinated animals
ELISA Enzyme-linked immunosorbant assay
HA Haemagglutinin
HI Haemagglutination inhibition
NA Neuraminidase
NI Neuraminidase inhibition
NP/M Nucleoprotein and matrix protein
NSP Nonstructural protein
SN Serum neutralization
S No evidence of NAIV

OIE Terrestrial Animal Health Standards Commission/January 2005
APPENDIX 3.3.5.

CATEGORISATION OF DISEASES AND PATHOGENIC AGENTS BY THE INTERNATIONAL EMBRYO TRANSFER SOCIETY

Article 3.3.5.1.

In 2004 [2002], the Research Subcommitte of the International Embryo Transfer Society (IETS) Health and Safety Advisory Committee again reviewed available research and field information on infectious diseases which have been studied regarding the risk of their transmission via in vivo derived embryos. As a result of this review, the IETS has categorised the following diseases and pathogenic agents into four categories. Please note that this categorisation applies only to in vivo derived embryos.

The following methodology is used by the Research Subcommittee to categorise infectious diseases with regard to the risk of their transmission:

1) Research procedures used to handle and process the embryos will comply with criteria that have been set out by A. Bielanski and W.C.D. Hare in Appendix A of the IETS Manual*.

2) The data used by the Sub-committee to categorise or re-categorise diseases will have been published in peer-reviewed articles in reputable scientific journals. This is to ensure that scientific procedures and results, as well as the interpretation of results, have undergone another level of review.

3) Decisions regarding disease categorisation are based on a consensus judgement which is taken annually by the Sub-committee. The names of members of the Sub-committee who are present when the decisions are made are recorded, as are the names of any others whose opinions were solicited in the decision making process.

4) Questions considered in the decision-making process include the following:

 a) What is the nature of the disease? For example, is the causal agent a uterine pathogen? Does it occur in blood? Does it persist in blood? Do asymptomatic shedders occur? What is the minimum infective dose?

 b) Has the causal agent been found in the ovarian/oviductal/uterine (OOU) environment?

 c) Is the causal agent’s presence in the OOU environment incidental or is it a consequence of the pathogenesis of the disease?

 d) Is the causal agent’s presence in the OOU environment consistent with obtaining viable embryos?

 e) Has the causal agent been found in flushing fluids?

 f) Has the causal agent been found to penetrate or cross the intact zona pellucida (ZP)?
Appendix XVIII (contd)

\(g \) Has the causal agent been found to adhere to the ZP?

\(h \) Is the causal agent removed by washing the embryo?

\(i \) Will special treatments (e.g. with trypsin) remove or inactivate the causal agent?

\(j \) How many embryos have been transferred with or without disease transmission?

\(k \) What is the accumulated evidence for non-transmission of the disease by embryo transfer?

\(l \) What evidence is there that the disease* could be transmitted by embryo transfer?

\(m \) Have negative (or positive) results been duplicated by the same or different investigators?

\(n \) Has evidence been accumulated for different animal species as well as for a range of different types and strains of the causal agent?

Article 3.3.5.2.

Category 1

Category 1 diseases or pathogenic agents are those for which sufficient evidence has accrued to show that the risk of transmission is negligible provided that the embryos are properly handled between collection and transfer according to the IETS Manual*.

The following diseases or pathogenic agents are in category 1:

– Bluetongue (cattle)
– Bovine spongiform encephalopathy (cattle)
– Brucella abortus (cattle)
– Enzootic bovine leukemia
– Foot and mouth disease (cattle)
– Infectious bovine rhinotracheitis: trypsin treatment required
– Aujeszky’s disease (pseudorabies) (swine): trypsin treatment required.

Article 3.3.5.3.

Category 2

Category 2 diseases are those for which substantial evidence has accrued to show that the risk of transmission is negligible provided that the embryos are properly handled between collection and transfer according to the IETS Manual*, but for which additional transfers are required to verify existing data.

The following diseases are in category 2:

– Bluetongue (sheep)
– Classical swine fever (hog cholera)
– Scrapie (sheep).

Article 3.3.5.4.

Category 3

Category 3 diseases or pathogenic agents are those for which preliminary evidence indicates that the risk of transmission is negligible provided that the embryos are properly handled between collection and transfer according to the IETS Manual* , but for which additional in vitro and in vivo experimental data are required to substantiate the preliminary findings.
The following diseases or pathogenic agents are in category 3:

- Bovine immunodeficiency virus
- Bovine spongiform encephalopathy (goats)
- Bovine viral diarrhea virus (cattle)
- *Campylobacter fetus* (sheep)
- Caprine arthritis/encephalitis
- Foot and mouth disease (swine, sheep, and goats)
- *Haemophilus somnus* (cattle)
- *Mycobacterium paratuberculosis* (cattle)
- Neospora caninum (cattle)
- Ovine pulmonary adenomatosis
- Porcine reproductive and respiratory disease syndrome (PRRS)
- Rinderpest (cattle)
- Swine vesicular disease.

Article 3.3.5.5.

Category 4

Category 4 diseases or pathogenic agents are those on which preliminary work has been conducted or is in progress for which studies have been done, or are in progress, that indicate:

a) that no conclusions are yet possible with regard to the level of transmission risk, or

b) the risk of transmission via embryo transfer might not be negligible even if the embryos are properly handled according to the IETS Manual* between collection and transfer.

The following diseases or pathogenic agents are in category 4:

- African swine fever
- Akabane (cattle)
- Bovine anaplasmosis
- Bluetongue (goats)
- Border disease (sheep)
- Bovine herpesvirus-4
- Ovine epididymitis (*Brucella ovis*)
- *Chlamydia psittaci* (cattle, sheep)
- Enterovirus (cattle, swine)
- *Escherichia coli* O9:K99 (cattle)
- *Leptospira borgpetersenii* serovar hardjo (cattle)
- *Leptospira* sp. (swine)
- Maedi-visna (sheep)
- *Mycobacterium bovis* (cattle)
- *Mycobacterium paratuberculosis* (cattle)
- *Mycoplasma* spp. (swine)
- Parainfluenza-3 virus (cattle)
Appendix XVIII (contd)

- Parvovirus (swine)
- Scrapie (goats)
- *Trichomonas foetus* (cattle)
- Porcine circovirus (type 2) (pigs)
- *Ureaplasma/Mycoplasma* spp. (cattle, goats)
- Vesicular stomatitis (cattle, swine).

Appendix XIX

Appendix 3.2.1.

Bovine and Small Ruminant Semen

Article 3.2.1.1.

General considerations

The purposes of official sanitary control of semen production are to:

1) maintain the health of animals on an artificial insemination centre at a level which permits the international distribution of semen with a negligible risk of infecting other animals or humans with pathogens transmissible by semen;

2) ensure that semen is hygienically collected, processed and stored.

Standards for diagnostic tests are described in the Terrestrial Manual.

Article 3.2.1.2.

Conditions applicable to artificial insemination centres

1) The artificial insemination centre is comprised of:

a) animal accommodation areas (including one isolation facility for sick animals) and a semen collection room, these two premises hereon designated as semen collection facilities; accommodation areas should be species specific where relevant;

b) a semen laboratory and semen storage areas;

c) administration offices.

A quarantine station may also be attached to the centre, provided that it is on a different location from that of those two first parts.

2) The centre should be officially approved by the Veterinary Administration.

3) The centre should be under the supervision and control of the Veterinary Authority which will be responsible for regular audits, at an interval of no more than 6 months, of protocols, procedures and prescribed records on the health and welfare of the animals in the centre and on the hygienic production, storage and dispatch of semen.

4) The centre should be under the direct supervision and control of a veterinarian designated by the artificial insemination centre and accredited by the Veterinary Administration for relevant official tasks.

Article 3.2.1.3.

Conditions applicable to semen collection facilities

1) The semen collection facilities should include separate and distinct areas for accommodating resident animals, for semen collection, for feed storage, for manure storage, and for the isolation of suspect animals.

OIE Terrestrial Animal Health Standards Commission/January 2005
Appendix XIX (contd)

2) Only animals associated with semen production should be permitted to enter the semen collection facilities. Other species of animals may be resident at the centre, if necessary for the movement or handling of the donors and teasers or for security, but contact with the donors and teasers should be minimised. All animals resident at the semen collection facilities must meet the minimum health requirements for donors.

3) The donors and teasers should be adequately isolated to prevent the transmission of diseases from farm livestock and other animals. Measures should be in place to prevent the entry of wild animals.

4) Personnel at the centre should be technically competent and observe high standards of personal hygiene to preclude the introduction of pathogenic organisms. Special protective clothing and footwear for use only at the semen collection facilities should be provided and worn at all times inside.

5) Visitors to the semen collection facilities should be kept to a minimum and visits should be subject to formal authorisation and control. Equipment for use with the livestock should be dedicated to the semen collection facilities or disinfected prior to entry. All equipment and tools brought on to the premises must be examined and treated if necessary to ensure that they cannot introduce disease.

6) Vehicles used for transport of animals to and from the semen collection facilities should not be allowed to enter the facilities.

7) The semen collection area should be cleaned daily after collection. The animals' accommodation and semen collection areas should be cleaned and disinfected at least once a year.

8) Fodder introduction and manure removal should be done in a manner which poses no significant animal health risk.

Article 3.2.1.4.

Conditions applicable to semen laboratories

1) The semen laboratory should be physically separated from the semen collection facilities, and include separate areas for artificial vagina cleaning and preparation, semen evaluation and processing, semen pre-storage and storage. Entry to the laboratory should be prohibited to unauthorised personnel.

2) The laboratory personnel should be technically competent and observe high standards of personal hygiene to preclude the introduction of pathogenic organisms during semen evaluation, processing and storage.

3) Visitors to the laboratory should be kept to a minimum and visits should be subject to formal authorisation and control.

4) The laboratory should be constructed with materials that permit effective cleaning and disinfection.

5) The laboratory should be regularly cleaned. Work surfaces for semen evaluation and processing should be cleaned and disinfected at the end of each workday.

6) The laboratory should be treated against rodents and insects on a regular basis as needed to control these pests.

7) The storage rooms and individual semen containers should be easy to clean and disinfect.

8) Only semen collected from donors having a health status equivalent to or better than the donors at the semen collection facilities should be processed in the laboratory.
Appendix XIX (contd)

Article 3.2.1.5.

Conditions applicable to testing of bulls and teaser animals

Bulls and teaser animals can enter an artificial insemination centre only if they fulfil the requirements laid down by the Veterinary Administration.

1) Pre-quarantine

The animals should comply with the following requirements prior to entry into isolation at the quarantine station.

a) Bovine brucellosis

The animals should comply with point 3 or 4 of Article 2.3.1.5. of the Terrestrial Code.

b) Bovine tuberculosis

The animals should comply with point 3 or 4 of Article 2.3.3.4. of the Terrestrial Code.

c) Bovine viral diarrhoea-mucosal disease (BVD-MD)

The animals should be subjected to the following tests:

i) a virus isolation test or a test for virus antigen, with negative results;

ii) a serological test to determine the serological status of every animal.

d) Infectious bovine rhinotracheitis-infectious pustular vulvovaginitis (IBR/IPV)

If the artificial insemination centre is to be considered as IBR/IPV free, the animals should either:

i) come from an IBR/IPV free herd as defined in Article 2.3.5.3.; or

ii) be subjected, with negative results, to a serological test for IBR/IPV on a blood sample.

e) Bluetongue

The animals should comply with Article 2.2.13.6., 2.2.13.7. or 2.2.13.8., depending on the bluetongue status of the country of origin of the animals.

2) Testing in the quarantine station prior to entering the semen collection facilities

Prior to entering the semen collection facilities of the artificial insemination centre, bulls and teaser animals should be kept in a quarantine station for at least 28 days. The animals should be subjected to diagnostic tests as described below a minimum of 21 days after entering the quarantine station, except for Campylobacter fetus and Trichomonas foetus, for which testing may commence after 7 days in quarantine. All the results should be negative except in the case of BVD-MD antibody serological testing (see point 2b)i) below.

a) Bovine brucellosis

The animals should be subjected to a serological test with negative results.
Appendix XIX (contd)

b) BVD-MD

i) All animals should be tested for viraemia as described in point 1c) above. Only when all the animals in quarantine test negative for viraemia may the animals enter the semen collection facilities upon completion of the 28-day quarantine period.

ii) After 21 days in quarantine, all animals should be subjected to a serological test to determine the presence or absence of BVD-MD antibodies.

iii) Only if no sero-conversion occurs in the animals which tested seronegative before entry into the quarantine station, may any animal (seronegative or seropositive) be allowed entry into the semen collection facilities.

iv) If sero-conversion occurs, all the animals that remain seronegative should be kept in quarantine over a prolonged time until there is no more seroconversion in the group for a period of 3 weeks. Serologically positive animals may be allowed entry into the semen collection facilities.

c) Campylobacter fetus subsp. venerealis

i) Animals less than 6 months old or kept since that age only in a single sex group prior to quarantine should be tested once on a preputial specimen, with a negative result.

ii) Animals aged 6 months or older that could have had contact with females prior to quarantine should be tested three times at weekly intervals on a preputial specimen, with a negative result in each case.

d) Trichomonas foetus

i) Animals less than 6 months old or kept since that age only in a single sex group prior to quarantine should be tested once on a preputial specimen.

ii) Animals aged 6 months or older that could have had contact with females prior to quarantine should be tested three times at weekly intervals on a preputial specimen, with a negative result in each case.

e) IBR/IPV

If the artificial insemination centre is to be considered as IBR/IPV free, the animals should be subjected, with negative results, to a diagnostic test for IBR/IPV on a blood sample. If any animal tests positive, the animal should be removed immediately from the quarantine station and the other animals of the same group should remain in quarantine and be retested, with negative results, not less than 21 days after removal of the positive animal.

f) Bluetongue

The animals should comply with Article 2.2.13.9., 2.2.13.10. or 2.2.13.11., depending on the bluetongue status of the country of origin of the animals.

3) Testing for BVD-MD prior to the initial dispatch of semen from each serologically positive bull

Prior to the initial dispatch of semen from BVD-MD serologically positive bulls, a semen sample from each animal should be subjected to a virus isolation or virus antigen ELISA test for BVD-MD. In the event of a positive result, the bull should be removed from the centre and all of its semen destroyed.
4) **Testing of frozen semen for IBR/IPV in artificial insemination centres not considered as IBR/IPV free**

Each aliquot of frozen semen should be tested as per Article 2.3.5.7.

5) **Testing programme for bulls and teasers resident in the semen collection facilities**

All bulls and teasers resident in the semen collection facilities should be tested at least annually for the following diseases, with negative results, where the country of origin is not free:

a) Bovine brucellosis

b) Bovine tuberculosis

c) BVD-MD

Animals negative to previous serological tests should be retested to confirm absence of antibodies.

Should an animal become serologically positive, every ejaculate of that animal collected since the last negative test should be either discarded or tested for virus with negative results.

d) *Campylobacter fetus* subsp. *Venerealis*

i) A preputial specimen should be cultured.

ii) Only bulls on semen production or having contact with bulls on semen production need to be tested. Bulls returning to collection after a lay off of more than 6 months should be tested not more than 30 days prior to resuming production.

e) Bluetongue

The animals should comply with the provisions referred to in Article 2.2.13.9., 2.2.13.10. or 2.2.13.11., depending on the bluetongue status of the country of origin of the animals.

f) *Trichomonas foetus*

i) A preputial specimen should be cultured.

ii) Only bulls on semen production or having contact with bulls on semen production need to be tested. Bulls returning to collection after a lay off of more than 6 months should be tested not more than 30 days prior to resuming production.

g) **IBR/IPV**

If the *artificial insemination centre* is to be considered as IBR/IPV free, the animals should comply with the provisions in point 2(c) of Article 2.3.5.3.
Appendix XIX (contd)

Article 3.2.1.5.bis

Conditions applicable to testing of rams/bucks and teaser animals

Rams/bucks and teaser animals can enter an *artificial insemination centre* only if they fulfil the requirements laid down by the *Veterinary Administration.*

1) **Pre-quarantine**

 The animals should comply with the following requirements prior to entry into isolation at the *quarantine station.*

 a) **Caprine and ovine brucellosis**

 The animals should comply with Article 2.4.2.6.

 b) **Ovine epididymitis**

 The animals should comply with Article 2.4.1.3.

 c) **Contagious agalactia**

 The animals should comply with points 1 and 2 of Article 2.4.3.1.

 d) **Peste des petits ruminants**

 The animals should comply with points 1, 2, 4 and 5 of Article 2.4.9.7.

 e) **Contagious caprine pleuropneumonia**

 The animals should comply with Article 2.4.6.5. or Article 2.4.6.7., depending on the CCPP status of the country of origin of the animals.

 f) **Caseous lymphadenitis**

 The animal should be free from clinical signs for the past 12 months.

 g) **Paratuberculosis**

 The animals should be free from clinical signs for the past 2 years.

 h) **Scrapie**

 If the animals do not originate from a scrapie free country or zone as defined in Article 2.4.8.3., the animals should comply with points 1 and 2 of Article 2.4.8.8.

 i) **Maedi-visna**

 The animals should comply with Article 2.4.5.2.
Appendix XIX (contd)

j) Caprine arthritis/encephalitis
 The animals should comply with Article 2.4.4.2.

k) Bluetongue
 The animals should comply with Article 2.2.13.6., 2.2.13.7. or 2.2.13.8., depending on the bluetongue status of the country of origin of the animals.

l) Tuberculosis
 In the case of goats, the animals should be subject to a single or comparative tuberculin test, with negative results.

m) Border disease
 The animals should be subject to a viral agent isolation test with negative results.

2) Testing in the quarantine station prior to entering the semen collection facilities
 Prior to entering the semen collection facilities of the artificial insemination centre, rams/bucks and teasers should be kept in a quarantine station for at least 28 days. The animals should be subjected to diagnostic tests as described below a minimum of 21 days after entering the quarantine station, with negative results:
 a) Caprine and ovine brucellosis
 The animals should be subject to testing as described in point 1 b) or c) of Article 2.4.2.8.
 b) Ovine epididymitis
 The animals and semen should be subject to testing as described in points 1 d) and 2 of Article 2.4.1.4.
 c) Maedi-visna or CAE
 The animals should be subjected to a serological test.
 d) Bluetongue
 The animals should comply with the provisions referred to in Article 2.2.13.9., 2.2.13.10. or 2.2.13.11., depending on the bluetongue status of the country of origin of the animals.

3) Testing programme for rams/bucks and teasers resident in the semen collection facilities
 All rams/bucks and teasers resident in the semen collection facilities should be tested at least annually for the following diseases, with negative results, where the country of origin is not free:
 a) caprine and ovine brucellosis;
 b) ovine epididymitis;
 c) Maedi-visna or CAE;
 d) tuberculosis (for goats only);
 e) bluetongue.
Appendix XIX (contd)

Article 3.2.1.6.

General considerations for hygienic collection and handling of semen

Observation of the recommendations described in the Articles below will very significantly reduce the likelihood of the semen being contaminated with common bacteria which are potentially pathogenic.

Article 3.2.1.7.

Conditions applicable to the management of bulls, rams and bucks

The objective is to keep the animals in a satisfactory state of cleanliness, particularly of the lower thorax and abdomen.

1) Whether on pasture or housed, the animal should be kept under hygienic conditions. If housed, the litter must be kept clean and renewed as often as necessary.

2) The coat of the animal should be kept clean.

3) For bulls, the length of the tuft of hairs at the preputial orifice, which is invariably soiled, should be cut to about 2 cm. The hair should not be removed altogether, because of its protective role. If cut too short, irritation of the preputial mucosa may result because these hairs aid the drainage of urine.

4) The animal should be brushed regularly, and where necessary on the day before semen collection, paying special attention to the underside of the abdomen.

5) In the event of obvious soiling, there should be careful cleaning, with soap or a detergent, of the preputial orifice and the adjoining areas, followed by thorough rinsing and drying.

6) When the animal is brought into the collection area, the technician must make sure that it is clean, and that it is not carrying any excessive litter or particles of feed on its body or its hooves, for such materials are always heavily contaminated.

Measures similar to the above should be adapted to rams and bucks.

Article 3.2.1.8.

Conditions applicable to the collection of semen

1) The floor of the mounting area should be easy to clean and to disinfect. A dusty floor should be avoided.

2) The hindquarters of the teaser, whether a dummy or a live teaser animal, must be kept clean. A dummy must be cleaned completely after each period of collection. A teaser animal must have its hindquarters cleaned carefully before each collecting session. The dummy or hindquarters of the teaser animal should be sanitized after the collection of each ejaculate. Disposable plastic covers may be used.

3) The hand of the person collecting the semen must not come into contact with the animal’s penis. Disposable gloves should be worn by the collector and changed for each collection.

4) The artificial vagina must be cleaned completely after each collection. It should be dismantled, its various parts washed, rinsed and dried, and kept protected from dust. The inside of the body of the device and the cone should be disinfected before re-assembly using approved disinfection techniques such as those involving the use of 70° ethyl or 98-99° isopropyl alcohol, ethylene oxide or steam. Once re-assembled, it should be kept in a cupboard which is regularly cleaned and disinfected.

OIE Terrestrial Animal Health Standards Commission/January 2005
5) The lubricant used should be clean. The rod used to spread the lubricant must be clean and should not be exposed to dust between successive collections.

6) The artificial vagina should not be shaken after ejaculation, otherwise lubricant and debris may pass down the cone to join the contents of the collecting tube.

7) When successive ejaculates are being collected, a new artificial vagina should be used for each mounting. The vagina should also be changed when the animal has inserted its penis without ejaculating.

8) The collecting tubes should be sterile, and either disposable or sterilised by autoclaving or heating in an oven at 180°C for at least 30 minutes. They should be kept sealed to prevent exposure to the environment while awaiting use.

9) After semen collection, the tube should be left attached to the cone and within its sleeve until it has been removed from the collection room for transfer to the laboratory.

Article 3.2.1.9.

Conditions applicable to the handling of semen and preparation of semen samples in the laboratory

1) Diluents
 a) All receptacles used should have been sterilised.
 b) Buffer solutions employed in diluents prepared on the premises should be sterilized by filtration (0.22 µm) or by autoclaving (121°C for 30 minutes) or be prepared using sterile water before adding egg yolk (if applicable) or equivalent additive and antibiotics.
 c) If the constituents of a diluent are supplied in commercially available powder form, the water used must have been distilled or demineralised, sterilized (121°C for 30 minutes or equivalent), stored correctly and allowed to cool before use.
 d) When egg yolk is used, it should be separated from eggs using aseptic techniques. Alternatively, commercial egg yolk prepared for human consumption or egg yolk treated by, for example, pasteurisation or irradiation to reduce bacterial contamination, may be used. Other additives must also be sterilized before use.
 e) Diluent should not be stored for more than 72 hours at +5°C before use. A longer storage period is permissible for storage at -20°C. Storage vessels should be stoppered.
 f) A mixture of antibiotics should be included with a bactericidal activity at least equivalent to that of the following mixtures in each ml of frozen semen: either gentamicin (250 µg), tylosin (50 µg), lincomycin-spectinomycin (150/300 µg) or penicillin (500 IU), streptomycin (500 µg), lincomycin-spectinomycin (150/300 µg).

The names of the antibiotics added and their concentration should be stated in the international veterinary certificate.

2) Procedure for dilution and packing
 a) The tube containing freshly collected semen should be sealed as soon as it arrives in the laboratory, and kept sealed until processed.
Appendix XIX (contd)

b) After dilution and during refrigeration, the semen should also be kept in a stoppered container.

c) During the course of filling receptacles for dispatch (such as insemination straws), the receptacles and other disposable items should be used immediately after being unpacked. Materials for repeated use should be sterilised with alcohol, ethylene oxide, steam or other approved sterilisation techniques.

d) If sealing powder is used, care should be taken to avoid its being contaminated.

3) Conditions applicable to the storage of semen

Semen for export should be stored separately from other genetic material not meeting these guidelines in fresh liquid nitrogen in sterilised/sanitised flasks before being exported.

Semen straws should be sealed and code marked in line with the international standards of the International Committee for Animal Recording (ICAR)*.

Containers should be sealed with an official numbered seal under the responsibility of the Veterinary Administration before export and accompanied by an international veterinary certificate listing the contents.

* The ICAR international standards on straws are contained in Recording Guidelines - Appendices to the international agreement of recording practices. Section 9, Appendix B relating to semen straw identification.
CHAPTER 2.2.14

RIFT VALLEY FEVER

Article 2.2.14.1.

For the purposes of the Terrestrial Code, the infective period for Rift Valley fever (RVF) shall be 30 days.

For the purposes of this Chapter, ruminants include camels.

Standards for diagnostic tests are described in the Terrestrial Manual.

This historic distribution of RVF is the sub-Saharan African continent, Madagascar and the Arabian Peninsula.

Countries or zones within the historic distribution of RVF or adjacent to those that are historically infected should be subjected to surveillance.

Epidemics of RVF may occur in infected areas after flooding. They are separated by inter-epidemic periods that may last for several decades in arid areas and, during these periods, the prevalence of infection in humans, animals and mosquitoes can be difficult to detect.

In the absence of clinical disease, the RVF status of a country or zone within the historically infected regions of the world should be determined by a surveillance and monitoring programme (carried out in conformity with the provisions of Chapter 1.3.6.) focusing on mosquitoes and serology of susceptible mammals. The programme should concentrate on parts of the country or zone at high risk because of historical, geographic and climatic factors, ruminant and mosquito population distribution, and proximity to areas where epidemics have recently occurred.

Article 2.2.14.2.

RVF infection free country or zone

A country or a zone may be considered free from RVF infection when the disease is notifiable in animals throughout the country and either:

1) the country or zone lies outside the historically infected regions, and not adjacent to historically infected; or

2) a surveillance and monitoring programme as described in Article 2.2.14.1. has demonstrated no evidence of RVF infection in humans, animals or mosquitoes in the country or zone during the past 4 years following a RVF epidemic.

The provisions of the last paragraph of Article 2.14.1. may need to be complied with on a continuous basis in order to maintain freedom from infection, depending on the geographical location of the country or zone.

A RVF infection free country or zone in which surveillance and monitoring has found no evidence that RVF infection is present will not lose its free status through the importation of permanently marked seropositive animals or those destined for direct slaughter.
Article 2.2.14.3.

RVF infected country/zone without disease

A RVF disease free country or zone is a country/zone that is not infection free (see Article 2.2.14.2.) but in which disease has not occurred in humans or animals in the past 6 months provided that climatic changes predisposing to outbreaks of RVF have not occurred during this time.

Article 2.2.14.4.

RVF infected country/zone with disease

A RVF infected country/zone with disease is one in which clinical disease in humans or animals has occurred within the past 6 months.

Article 2.2.14.5.

Veterinary Administrations of countries shall consider whether there is a risk with regard to RVF infection in accepting importation or transit through their territory from other countries of the following commodities:

1) live ruminants;
2) meat and meat products of domestic and wild ruminants.

Other commodities should be considered as not having the potential to spread RVF when they are the subject of international trade.

Article 2.2.14.6.

When importing from RVF infection free countries or zones, Veterinary Administrations should require:

for ruminants

the presentation of an international veterinary certificate attesting that the animals:

1) were kept in a RVF free country or zone since birth or for at least 30 days prior to shipment, and
2) if the animals were exported from a free zone, either:
 a) did not transit through an infected zone during transportation to the place of shipment; or
 b) were protected from mosquito attack at all times when transiting through an infected zone.

Article 2.2.14.7.

When importing from RVF infection free countries or zones, Veterinary Administrations should require:

for meat and meat products of domestic and wild ruminants

the presentation of an international veterinary certificate attesting that the products are derived from animals which remained in the RVF infection free country/free zone since birth or for the last 30 days.
Article 2.2.14.8.

When importing from RVF infected countries/zones without disease, Veterinary Administrations should require:

for ruminants

the presentation of an *international veterinary certificate* attesting that the animals:

1) showed no evidence of RFV on the day of shipment;

2) were kept in a RVF infected country/zone free of disease since birth or for the last 6 months providing that climatic changes predisposing to outbreaks of RVF have not occurred during this time;

OR

3) were vaccinated against RVF at least 21 days prior to shipment with modified live virus vaccine;

OR

4) were held in a mosquito-proof *quarantine station* for at least 30 days prior to shipment during which the animals showed no clinical signs of RVF and were protected from mosquitoes between quarantine and the *place of shipment* and at the *place of shipment*;

AND

5) did not transit through an infected zone with disease during transportation of the *place of shipment*.

Article 2.2.14.9.

When importing from RVF infected countries or zones without disease, Veterinary Administrations should require:

for meat and meat products of domestic and wild ruminants

the presentation of an *international veterinary certificate* attesting that:

1) the products are derived from animals which:

 a) remained in the RVF disease free country or zone since birth or for the last 30 days;

 b) were slaughtered in an *approved abattoir* and were subjected to ante-mortem and post-mortem inspections for RVF with favourable results;

2) the carcasses from which the products were derived were submitted to maturation at a temperature above +2°C for a minimum period of 24 hours following slaughter.

Article 2.2.14.10.

When importing from RVF infected countries or zones with disease, Veterinary Administrations should require:
Appendix XX (contd)

for ruminants

the presentation of an international veterinary certificate attesting that the animals:

1) showed no evidence of RVF on the day of shipment;

2) vaccinated against RVF at least 21 days prior to shipment with modified live virus vaccine;

OR

3) were held in a mosquito-proof quarantine station for at least 30 days prior to shipment during which the animals showed no clinical signs of RVF and were protected from mosquito attack between quarantine and the place of shipment and at the place of shipment.

Article 2.2.14.11.

When importing from RVF infected countries or zones with disease, Veterinary Administrations should require:

for meat and meat products of domestic and wild ruminants

the presentation of an international veterinary certificate attesting that the carcasses:

1) are from animals which have been slaughtered in an approved abattoir and have been subjected to ante-mortem and post-mortem inspections for RVF with favourable results; and

2) have been fully eviscerated and submitted to maturation at a temperature above +2°C for a minimum period of 24 hours following slaughter.

Article 2.2.14.12.

When importing from RVF infected countries or zones with disease, Veterinary Administrations should require:

for in vivo derived embryos of ruminants

the presentation of an international veterinary certificate attesting that the donor animals:

1) showed no evidence of RVF within the period from 28 days prior to 28 days following collection of the embryos;

2) were vaccinated against RVF at least 21 days prior to collection with modified live virus vaccine;

OR

3) were serologically tested on the day of collection and at least 14 days following collection using an ELISA on the samples, and showing no significant rise in titre.
APPENDIX 3.9.3.

GUIDELINES FOR THE RESPONSIBLE AND PRUDENT USE OF ANTIMICROBIAL AGENTS IN VETERINARY MEDICINE

Article 3.9.3.1.

Purpose

These guidelines provide guidance for the responsible and prudent use of antimicrobials in veterinary medicine, with the aim of protecting both animal and human health. The competent authorities responsible for the registration and control of all groups involved in the production, distribution and use of veterinary antimicrobials have specific obligations.

Prudent use is principally determined by the outcome of the marketing authorisation procedure and by the implementation of specifications when antimicrobials are administered to animals.

Article 3.9.3.2.

Objectives of prudent use

Prudent use includes a set of practical measures and recommendations intended to prevent and/or reduce the selection of antimicrobial-resistant bacteria in animals to:

1) maintain the efficacy of antimicrobial agents and to ensure the rational use of antimicrobials in animals with the purpose of optimising both their efficacy and safety in animals;
2) comply with the ethical obligation and economic need to keep animals in good health;
3) prevent, or reduce, as far as possible, the transfer of bacteria (with their resistance determinants) within animal populations;
4) maintain the efficacy of antimicrobial agents used in food-producing animals;
5) prevent or reduce the transfer of resistant bacteria or resistance determinants from animals to humans;
6) maintain the efficacy of antimicrobial agents used in human medicine and prolong the usefulness of the antimicrobials;
7) prevent the contamination of animal-derived food with antimicrobial residues that exceed the established maximum residue limit (MRL);
8) protect consumer health by ensuring the safety of food of animal origin.
Appendix XXI (contd)

Article 3.9.3.3.

Responsibilities of the regulatory authorities

1) Marketing authorisation

The national regulatory authorities are responsible for granting marketing authorisation. This should be done in accordance with the provisions of the Terrestrial Code. They have a significant role in specifying the terms of this authorisation and in providing the appropriate information to the veterinarian.

2) Submission of data for the granting of the marketing authorisation

The pharmaceutical industry has to submit the data requested for the granting of the marketing authorisation. The marketing authorisation is granted only if the criteria of safety, quality and efficacy are met. An assessment of the potential risks and benefits to both the animals and humans the consumer resulting from the use of antimicrobial agents in food-producing animals should be carried out. The evaluation should focus on each individual antimicrobial product and the findings not be generalised to the class of antimicrobials to which the particular active principle belongs. If dose ranges or different durations of treatment are suggested, Guidance on usage should be provided for all dose ranges or different durations of treatment that are proposed.

3) Market approval

Regulatory authorities should attempt to expedite the market approval process of a new antimicrobial in order to address a specific need for the treatment of disease.

4) Registration procedures

Countries lacking the necessary resources to implement an efficient registration procedure for veterinary medicinal products (VMPs), and whose supply principally depends on imports from foreign countries, should undertake the following measures:

a) check the efficacy of administrative controls on the import of these VMPs;

b) check the validity of the registration procedures of the exporting and manufacturing country as appropriate;

c) develop the necessary technical co-operation with experienced authorities to check the quality of imported VMPs as well as the validity of the recommended conditions of use.

Regulatory authorities of importing countries should request the pharmaceutical industry to provide quality certificates prepared by the competent authority of the exporting and manufacturing country as appropriate. All countries should make every effort to actively combat the manufacture, advertisement, trade, distribution and use of unlicensed and counterfeit bulk active pharmaceutical ingredients and products.

5) Quality control of antimicrobial agents

Quality controls should be performed:

a) in compliance with the provisions of good manufacturing practices;

b) to ensure that analysis specifications of antimicrobial agents used as active ingredients comply with the provisions of approved monographs;
c) to ensure that the quality and concentration (stability) of antimicrobial agents in the marketed dosage form(s) are maintained until the expiry date, established under the recommended storage conditions;

d) to ensure the stability of antimicrobials when mixed with feed or drinking water;

e) to ensure that all antimicrobials are manufactured to the appropriate quality and purity in order to guarantee their safety and efficacy.

6) **Assessment Control** of therapeutic efficacy

a) Preclinical trials

i) Preclinical trials should:

 - establish the range of activity of antimicrobial agents on both pathogens and non-pathogens (commensals);

 - assess the ability of the antimicrobial agent to select for *resistance resistant bacteria in vitro and in vivo*, taking into consideration pre-existing resistant strains;

 - establish an appropriate dosage regimen necessary to ensure the therapeutic efficacy of the antimicrobial agent and limit the selection of antimicrobial resistant bacteria. (Pharmacokinetic pharmacodynamic data and models can assist in this appraisal.)

ii) The activity of antimicrobial agents towards the targeted *micro-organism bacteria* should be established by pharmacodynamics. The following criteria should be taken into account:

 - mode and spectrum of activity action;

 - minimum inhibitory and bactericidal concentrations;

 - time- or concentration-dependent activity or co-dependency;

 - activity at the site of infection.

iii) The dosage regimens allowing maintenance of effective antimicrobial levels should be established by pharmacokinetics. The following criteria should be taken into account:

 - bio-availability according to the route of administration;

 - concentration of the antimicrobial at the site of infection and its distribution in the treated animal;

 - metabolism that may lead to the inactivation of antimicrobials;

 - excretion routes;

 - use of combinations of antimicrobial agents should be scientifically supported justified.

b) Clinical trials

Clinical trials should be performed to confirm the validity of the claimed therapeutic indications and dosage regimens established during the preclinical phase. The following criteria should be taken into account:
Appendix XXI (contd)

i) diversity of the clinical cases encountered when performing multi-centre trials;

ii) compliance of protocols with good clinical practice, such as Veterinary International Cooperation on Harmonisation (VICH) guidelines;

iii) eligibility of studied clinical cases, based on appropriate criteria of clinical and bacteriological diagnoses;

iv) parameters for qualitatively and quantitatively assessing the efficacy of the treatment.

7) Assessment of the potential of antimicrobials to select for resistant bacteria

Other studies may be requested in support of the assessment of the potential of antimicrobials to select for resistant bacteria. The interpretation of their results should be undertaken with great caution. The party applying for market authorisation should, where possible, supply data derived in target animal species under the intended conditions of use.

For this the following may be considered. Considerations may include:

a) the concentration of active compound in the gut of the animal (where the majority of potential food-borne pathogens reside) at the defined dosage level;

b) the route and level of human exposure to food-borne or other resistant organisms bacteria;

c) the degree of cross-resistance within the class of antimicrobials and between classes of antimicrobials;

d) the pre-existing level of resistance in the pathogens of human health concern (baseline determination) in both animals and humans.

Other studies may be requested in support of the assessment of the potential of antimicrobials to select for resistant bacteria. The interpretation of their results should be undertaken with great caution.

8) Establishment of acceptable daily intake, maximum residue level and withdrawal periods for antimicrobial compounds

a) When setting the acceptable daily intake (ADI) and MRL for an antimicrobial substance, the safety evaluation should also include the potential biological effects on the intestinal flora of humans.

b) The establishment of an ADI for each antimicrobial agent, and an MRL for each animal-derived food, should be undertaken.

c) For each VMP containing antimicrobial agents, withdrawal periods should be established in order to produce food in compliance with the MRL, taking into account:

i) the MRL established for the antimicrobial agent under consideration;

ii) the composition of the product and the pharmaceutical form;

iii) the target animal species;

iv) the dosage regimen and the duration of treatment;

v) the route of administration.
d) The applicant should provide methods for regulatory testing of residues in food.

9) Protection of the environment

An assessment of the impact of the proposed antimicrobial use on the environment should be conducted. Efforts should be made to ensure that the environmental impact of antimicrobial use contamination with antimicrobials is restricted to a minimum.

10) Establishment of a summary of product characteristics for each veterinary antimicrobial medicinal product (VAP)

The summary of product characteristics contains the information necessary for the appropriate use of VAPs, and constitutes the official reference for their labelling and package insert. This summary should always contain the following items:

a) active ingredient and class,
b) pharmacological properties,
c) any potential adverse effects,
d) target animal species,
e) therapeutic indications,
f) target micro-organisms bacteria,
g) dosage and administration route,
h) withdrawal periods,
i) incompatibilities,
j) shelf-life expiry date,
k) operator safety,
l) particular precautions before use,
m) particular precautions for the proper disposal of un-used or expired products,
n) information on conditions of use relevant to the potential for selection of resistance.

Antimicrobials that are considered to be important in treating critical diseases in humans should only be used in animals when alternatives are either unavailable or inappropriate.

Consideration should be given to providing such guidance by means of the product label and data sheet.

The oral route should be used with caution.
Appendix XXI (contd)

11) Post-marketing antimicrobial surveillance

The information collected through existing pharmacovigilance programmes, including lack of efficacy, should form part of the comprehensive strategy to minimise antimicrobial resistance. In addition to this the following should be considered:

a) General epidemiological surveillance

The surveillance of animal bacteria resistant to antimicrobial agents is essential. The relevant authorities should implement a programme according to the Terrestrial Code.

b) Specific surveillance

Specific surveillance to assess the impact of the use of a specific antimicrobial may be implemented after the granting of the marketing authorisation. The surveillance programme should evaluate not only resistance development in target animal pathogens, but also in food-borne pathogens and/or commensals. Such surveillance will also contribute to general epidemiological surveillance of antimicrobial resistance.

12) Supply and administration Distribution of the antimicrobial agents used in veterinary medicine

The relevant authorities should ensure that all the antimicrobial agents used in animals are:

a) prescribed by a veterinarian or other suitably trained and authorised person;

b) delivered by an authorised animal health professional;

b) supplied only through licensed/authorised distribution systems;

c) administered to animals by a veterinarian or under the supervision of a veterinarian or by other authorised persons;

d) the relevant authorities should develop effective procedures for the safe collection and destruction of unused or expired VAPs.

13) Control of advertising

All advertising of antimicrobials should be controlled by a code of advertising standards, and the relevant authorities must ensure that the advertising of antimicrobial products:

a) complies with the marketing authorisation granted, in particular regarding the content of the summary of product characteristics;

b) is restricted to authorised professionals, according to national legislation in each country.

14) Training of antibiotic users

The training of users of antimicrobials antibiotic users should involve all the relevant organisations, such as regulatory authorities, pharmaceutical industry, veterinary schools, research institutes, veterinary professional organisations and other approved users such as food-animal owners. This training should focus on:
a) information on disease prevention and management strategies;

b) the ability of antimicrobials to select for resistance in food-producing animals;

c) the need to observe responsible use recommendations for the use of antimicrobial agents in animal husbandry in agreement with the provisions of the marketing authorisations.

15) Research

The relevant authorities should encourage public- and industry-funded research.

Article 3.9.3.4.

Responsibilities of the veterinary pharmaceutical industry

1) Marketing authorisation of VAPs VMPs

The veterinary pharmaceutical industry has responsibilities to:

a) supply all the information requested by the national regulatory authorities;

b) guarantee the quality of this information in compliance with the provisions of good manufacturing, laboratory and clinical practices;

c) implement a pharmacovigilance programme and on request, specific surveillance for bacterial susceptibility and resistance.

2) Marketing and export of VAPs VMPs

For the marketing and export of VAPs VMPs:

a) only licensed and officially approved VAPs VMPs should be sold and supplied, and then only through licensed/authorised distribution systems;

b) the pharmaceutical industry should provide quality certificates prepared by the Competent Authority of the exporting and/or manufacturing countries to the importing country only for VMPs that have been authorised in the (exporting) country in which the product(s) is approved for sale or the quality of which is certified by a regulatory authority should be exported;

c) the national regulatory authority should be provided with the information necessary to evaluate the amount of antimicrobial agents marketed.

3) Advertising

The veterinary pharmaceutical industry should:

a) disseminate information in compliance with the provisions of the granted authorisation;

b) ensure that the advertising of antimicrobials directly to the food animal livestock producer is discouraged.

4) Training

The veterinary pharmaceutical industry should participate in training programmes as defined in point 14 of Article 3.9.3.3.
Appendix XXI (contd)

5) Research

The veterinary pharmaceutical industry should contribute to research as defined in point 15 of Article 3.9.3.3.

Article 3.9.3.5.

Responsibilities of wholesale and retail distributors pharmacists

1) Retailers distributing VAPs Pharmacists should only do so on the prescription of a veterinarian or other suitably trained person authorised in accordance with national legislation and all products should be appropriately labelled distribute veterinary antimicrobials on prescription. All products should be appropriately labelled (see point 5 of Article 3.9.3.6).

2) The guidelines on the responsible use of antimicrobials should be reinforced by retail distributors pharmacists who should keep detailed records of:
 a) date of supply,
 b) name of prescriber,
 c) name of user,
 d) name of product,
 e) batch number,
 f) quantity supplied.

3) Distributors Pharmacists should also be involved in training programmes on the responsible use of antimicrobials, as defined in point 14 of Article 3.9.3.3.

Article 3.9.3.6.

Responsibilities of veterinarians

The prime concern of the veterinarian is to promote public health and animal health and welfare. The veterinarian’s responsibilities include preventing, identifying and treating animal diseases. The promotion of sound animal husbandry methods, hygiene procedures and vaccination strategies (good farming practice) can help encourage good farming practice in order to minimise the need for antimicrobial use in food-producing animals livestock.

Veterinarians should only prescribe antimicrobials for animals under their care.

1) Use of antimicrobial agents

The responsibilities of veterinarians in this area are to carry out a proper clinical examination of the animal(s) and then:
 a) only prescribe antimicrobials when necessary;
 b) make an appropriate choice of the antimicrobial based on experience of the efficacy of treatment.

On certain occasions, a group of animals that may have been exposed to pathogenic bacteria may need to be treated without recourse to an accurate diagnosis and antimicrobial susceptibility testing to prevent the development of clinical disease and for reasons of animal welfare.
2) Choosing an antimicrobial agent

a) The expected efficacy of the treatment is based on:

i) the clinical experience of the veterinarian;

ii) the activity towards the pathogenic bacteria involved;

iii) the appropriate route of administration;

iv) known pharmacokinetics/tissue distribution to ensure that the selected therapeutic agent is active at the site of infection;

v) the epidemiological history of the rearing unit, particularly in relation to the antimicrobial resistance profiles of the pathogenic bacteria involved.

Should a first-line antibiotic treatment fail or should the disease recur, a second line treatment should ideally be based on the results of diagnostic tests.

To minimise the likelihood of antimicrobial resistance developing, it is recommended that antimicrobials be targeted to pathogenic bacteria likely to be the cause of infection.

On certain occasions, a group of animals that may have been exposed to pathogens may need to be treated without recourse to an accurate diagnosis and antimicrobial susceptibility testing to prevent the development of clinical disease and for reasons of animal welfare.

b) Use of combinations of antimicrobial agents should be scientifically supported. Combinations of antimicrobials may be used for their synergistic effect to increase therapeutic efficacy or to broaden the spectrum of activity. Furthermore, the use of combinations of antimicrobials can be protective against the selection of resistance in cases in which bacteria exhibit a high mutation rate against a given antimicrobial.

Some combinations of antimicrobials may, in certain cases, lead to an increase in the selection of resistance.

3) Appropriate use of the antimicrobial agent chosen

A prescription for antimicrobial agents should indicate precisely the treatment regime, the dose, the treatment dosage intervals, the duration of the treatment, the withdrawal period and the amount of drug to be delivered, depending on the dosage and the number of animals to be treated.

The off-label use of a veterinary antimicrobial drug may be permitted in appropriate circumstances and should be in agreement with the national legislation in force including the withdrawal periods to be used. It is the veterinarian’s responsibility to define the conditions of responsible use in such a case including the therapeutic regimen, the route of administration, and the duration of the treatment.

As far as “Off label use” (extra label use) of veterinary medicinal products is concerned, although all medicinal products should be prescribed and used in accordance with the specifications of the marketing authorisation, the prescriber should have the discretion to adapt these in exceptional circumstances.

4) Recording

Records on veterinary antimicrobial drugs should be kept in conformity with national legislation. Information records should include the following: All available information should be consolidated into one form or database. This information should:
Appendix XXI (contd)

a) allow monitoring of the quantities of medication used;
b) contain a list of all medicines supplied to each food-producing animal livestock holding;
c) contain a list of medicine withdrawal periods and a system for allowing information to be updated;
d) contain a record of antimicrobial susceptibilities;
e) provide comments concerning the response of animals to medication;
f) allow the investigation of adverse reactions to antimicrobial treatment, including lack of response due to antimicrobial resistance. Suspected adverse reactions should be reported to the appropriate regulatory authorities.

Veterinarians should also periodically review farm records on the use of VAPs to ensure compliance with their directions and use these records to evaluate the efficacy of treatment regimens.

5) Labelling

All medicines supplied by a veterinarian should be adequately labelled according to national legislation with the following minimum information:

a) the name of the owner/keeper or person who has control of the animal(s);
b) the address of the premises where the animal(s) is kept;
c) the name and address of the prescribing veterinarian;
d) identification of the animal or group of animals to which the antimicrobial agent was administered;
e) the date of supply;
f) the indication ‘For animal treatment only’;
g) the warning ‘Keep out of the reach of children’;
h) the relevant withdrawal period, even if this is nil.

The label should not obscure the expiry date of the preparation, batch number or other important information supplied by the manufacturer.

6) Training

Veterinary professional organisations should participate in the training programmes as defined in point 14 of Article 3.9.3.3. It is recommended that veterinary professional organisations develop for their members species-specific clinical practice guidelines on the responsible use of VAPs.

Article 3.9.3.7.

Responsibilities of food-animal livestock producers

1) Food-animal livestock producers with the assistance of a veterinarian, where possible, are responsible for preventing outbreaks of disease and implementing health and welfare programmes on their farms (good farming practice) in order to promote animal health.
2) **Food-animal Livestock producers** should have to:

 a) **draw up a health plan with the attending veterinarian in charge** that outlines preventative measures (feedlot health plans, mastitis control plans, endo- and ectoparasite control, worming and vaccination programmes, etc.);

 b) **use antimicrobial agents only on prescription, and according to the provisions of the prescription**;

 c) **use antimicrobial agents in the species, for the uses and at the dosages doses on the approved/registered labels and in accordance with product label instructions or the advice of a veterinarian familiar with the animals and the production site**;

 d) **isolate sick animals, when appropriate, to avoid the transfer of pathogens resistant bacteria. Dispose of dead or dying animals promptly under conditions approved by the relevant authorities**;

 e) **comply with the storage conditions of antimicrobials in the rearing unit, according to the provisions of the leaflet and package insert**;

 f) **address hygienic conditions regarding contacts between people (veterinarians, breeders, owners, children) and the animals treated**;

 g) **comply with the recommended withdrawal periods to ensure that residue levels in animal-derived food do not present a risk for the consumer**;

 h) **dispose of surplus antimicrobials under safe conditions for the environment; partially used medicines should only be used within the expiry date, for the condition for which they were prescribed and, if possible, in consultation with the prescribing veterinarian**;

 i) **maintain all the laboratory records of bacteriological and susceptibility tests; these data should be made available to the veterinarian responsible for treating the animals**;

 j) **keep adequate records of all medicines used, including the following**:

 i) **name of the product/active substance and batch number,**

 ii) **name of prescriber and/or the supplier,**

 iii) **date of administration,**

 iv) **identification of the animal or group of animals to which the antimicrobial agent was administered,**

 v) **diagnosis/clinical conditions treated,**

 vi) **dosage quantity of the antimicrobial agent administered,**

 vii) **withdrawal periods,**

 viii) **result of laboratory tests,**

 ix) **effectiveness of therapy;**

 k) **inform the responsible veterinarian of recurrent disease problems.**
Appendix XXI (contd)

APPENDIX 3.9.4.

RISK ANALYSIS ASSESSMENT FOR ANTIMICROBIAL RESISTANCE ARISING FROM THE USE OF ANTIMICROBIALS IN ANIMALS

Article 3.9.4.1.

Guidelines for analysing the risks to animal and public health from antimicrobial resistant bacteria of animal origin

1) Introduction

The use of antimicrobials for therapy, prophylaxis and growth promotion in animals can reduce their efficacy in animal and human medicine, through the development of antimicrobial resistant strains of pathogenic bacteria. This risk may be represented by the loss of therapeutic efficacy of one or several antimicrobial drugs and includes the emergence of multi-resistant bacteria.

2) Objective

The principal aim of risk analysis for antimicrobial resistance in bacteria from animals is to provide Member Countries with a transparent, objective and scientifically defensible method of assessing and managing the human and animal health risks associated with the development of resistance arising from the use of antimicrobials in animals.

3) The risk analysis process

The principles of risk analysis are described in Section 1.3. of the Terrestrial Code.

A qualitative risk assessment should always be undertaken. Its outcome will determine whether progression to a quantitative risk assessment is feasible and/or necessary.

4) Hazard identification

For the purposes of this Appendix, the hazard is the resistance determinant that emerges as a result of the use of a specific antimicrobial in animals. This definition reflects the development of resistance in a species of pathogenic bacteria, as well as the development of a resistance determinant that may be passed from one species of bacteria to another. The conditions under which the hazard might produce adverse consequences include any feasible scenarios through which humans or animals could become exposed to a pathogen which contains that resistance determinant, fall ill and then be treated with an antimicrobial that is no longer effective because of the resistance.

5) Risk assessment

The assessment of the risk to human and animal health from antimicrobial-resistant bacteria resulting from the use of antimicrobials in animals should examine:

a) the likelihood of emergence of resistant bacteria arising from the use of antimicrobial(s), or more particularly, production of the resistant determinants if transmission is possible between bacteria;
Appendix XXI (contd)

b) consideration of all pathways and their importance, by which humans could be exposed to these resistant bacteria or resistance determinants, together with the possible degree of exposure;

c) the consequences of exposure and the estimated probability of its occurrence.

Article 3.9.4.2.

Analysis of risks to human health

1) Definition of the risk

The infection of humans with bacteria that have acquired resistance to a specific antimicrobial used in animals, and resulting in the loss of benefit of antimicrobial therapy used to manage the human infection.

2) Hazard identification

− Bacteria that have acquired resistance, (including multiple resistance) arising from the use of an antimicrobial(s) in animals.

− Bacteria having obtained a resistance determinant(s) from other bacteria which have acquired resistance arising from the use of an antimicrobial(s) in animals.

The identification of the hazard must include consideration of the class or subclass of the antimicrobial(s). This definition should be read in conjunction with point 4) of Article 3.9.4.1.

3) Release assessment

A release assessment describes the biological pathways necessary for the use of a specific antimicrobial in animals to lead to the release of resistant bacteria or resistance determinants into a particular environment, and estimating either qualitatively or quantitatively the probability of that complete process occurring. The release assessment describes the probability of the release of each of the potential hazards under each specified set of conditions with respect to amounts and timing, and how these might change as a result of various actions, events or measures.

The following factors should be considered in the release assessment:

− species of animal treated with the antimicrobial(s) in question

− number of animals treated, geographical distribution of those animals

− amounts used and duration of treatment

− variation in methods and routes of administration of the antimicrobial(s)

− the pharmacodynamics/pharmacokinetics of the antimicrobial(s)

− bacteria developing resistance as a result of the antimicrobial(s) use

− mechanism of direct or indirect transfer of resistance

− cross-resistance and/or co-resistance with other antimicrobials

− surveillance of animals, animal products of animal origin and animal waste products for the existence of resistant bacteria.
Appendix XXI (contd)

4) Exposure assessment

An exposure assessment describes the biological pathways necessary for exposure of humans to the resistant bacteria or resistance determinants released from a given antimicrobial use in animals, and estimating the probability of the exposures occurring. The probability of exposure to the identified hazards is estimated for specified exposure conditions with respect to amounts, timing, frequency, duration of exposure, routes of exposure and the number, species and other characteristics of the human populations exposed.

The following factors should be considered in the exposure assessment:

- human demographics and food consumption patterns, including traditions and cultural practices
- prevalence of resistant bacteria in food
- animal environment contaminated environmental contamination with resistant bacteria
- prevalence of animal feed contaminated with resistant bacteria
- cycling of resistant bacteria between humans, animals and the environment
- steps of microbial decontamination of food
- microbial load in contaminated food at the point of consumption
- survival capacity and redistribution of resistant bacteria during the food production process (including slaughtering, processing, storage, transportation and retailing)
- disposal practices for waste products and the opportunity for human exposure to resistant bacteria or resistance determinants in those waste products
- point of consumption of food (professional catering, home cooking)
- variation in consumption and food-handling methods of exposed populations and subgroups of the population
- capacity of resistant bacteria to become established in human intestinal flora
- human-to-human transmission of the bacteria under consideration
- capacity of resistant bacteria to transfer resistance to human commensal bacteria and zoonotic agents
- amount and type of antimicrobials used in response to human illness
- dose, route of administration (oral, parenteral) and duration of human treatment
- pharmacokinetics (metabolism, bioavailability, access to intestinal flora).

5) Consequence assessment

A consequence assessment describes the relationship between specified exposures to resistant bacteria or resistance determinants and the consequences of those exposures. A causal process must exist by which exposures produce adverse health or environmental consequences, which may in turn lead to socio-economic consequences. The consequence assessment describes the potential consequences of a given exposure and estimates the probability of them occurring.
The following factors should be considered in the consequence assessment:

- dose–response relationships
- variation in disease susceptibility of exposed populations or subgroups of those populations
- variation and frequency of human health effects resulting from loss of efficacy of antimicrobials
- changes in human medicinal practices resulting from reduced confidence in antimicrobials
- changes in food consumption patterns due to loss of confidence in the safety of food products and any associated secondary risks
- associated costs
- interference with a classical first line/choice antimicrobial therapy in humans
- perceived future usefulness of the antimicrobial (time reference)
- prevalence of resistance in human bacterial pathogens under consideration.

6) Risk estimation

A risk estimation integrates the results from the release assessment, exposure assessment and consequence assessment to produce overall estimates of risks associated with the hazards. Thus, risk estimation takes into account the whole of the risk pathway from hazard identification to the unwanted consequences.

The following factors should be considered in the risk estimation:

- number of people falling ill and the proportion of that number affected with resistant strains of bacteria
- increased severity or duration of infectious disease
- number of person/days of illness per year
- deaths (total per year; probability per year or lifetime for a random member of the population or a member of a specific more exposed sub-population)
- importance of the pathology caused by the target bacteria
- absence of alternate antimicrobial therapy
- incidence of resistance observed in humans
- some arbitrary scale of consequences to allow weighted summation of different risk impacts (e.g. illness and hospitalisation).

7) Risk management options and risk communication

Risk management options and risk communication have to be continuously monitored and reviewed in order to ensure that the objectives are being achieved.
Appendix XXI (contd)

Article 3.9.4.3.

Analysis of risks to animal health

1) Definition of the risk

The infection of animals with bacteria that have acquired resistance from the use of a specific antimicrobial(s) in animals, and resulting in the loss of benefit of antimicrobial therapy used to manage the animal infection.

2) Hazard identification

− Bacteria that have acquired resistance, (including multiple resistance) arising from the use of an antimicrobial(s) in animals.
− Bacteria having obtained a resistance determinant(s) from another bacteria which have acquired resistance arising from the use of an antimicrobial(s) in animals.

The identification of the hazard must include considerations of the class or subclass of the antimicrobial(s). This definition should be read in conjunction with point 4) of Article 3.9.4.1.

3) Release assessment

The following factors should be considered in the release assessment:
− animal species treated
− number of animals treated, sex, age and their geographical distribution
− amounts used and duration of treatment
− variation in methods and routes of administration of the antimicrobial(s)
− the pharmacodynamics/ pharmacokinetics of the antimicrobial(s)
− site and type of infection
− development of resistant bacteria
− mechanisms and pathways of resistance transfer
− cross-resistance and/or co-resistance
− surveillance of animals, animal products of animal origin and animal waste products for the existence of resistant bacteria.

4) Exposure assessment

The following factors should be considered in the exposure assessment:
− prevalence and trends of resistant bacteria in clinically ill and clinically unaffected animals
− prevalence of resistant bacteria in feed /the animal environment
− animal-to-animal transmission of the resistant bacteria
− number/percentage of animals treated
− dissemination of resistant bacteria from animals (animal husbandry methods, movement of animals)
− quantity of antimicrobial(s) used in animals
− treatment regimens (dose, route of administration, duration)
− survival capacity of resistant bacteria
− exposure of wild life to resistant bacteria
− disposal practices for waste products and the opportunity for animal exposure to resistant bacteria or resistance determinants in those products
− capacity of resistant bacteria to become established in animal intestinal flora
− exposure to resistance determinants from other sources
− dose, route of administration and duration of treatment
− pharmacokinetics (metabolism, bioavailability, access to intestinal flora)
− cycling of resistant bacteria between humans, animals and the environment.

5) Consequence assessment
The following factors should be considered in the consequence assessment:
− dose–response relationships
− variation in disease susceptibility of exposed populations and subgroups of those populations
− variation and frequency of animal health effects resulting from loss of efficacy of antimicrobials
− changes in veterinary medicine practices resulting from reduced confidence in antimicrobials
− associated cost
− perceived future usefulness of the drug (time reference).

6) Risk estimation
The following factors should be considered in the risk estimation:
− number of therapeutic failures due to resistant bacteria
− animal welfare
Appendix XXI (contd)

- economic cost
- deaths (total per year; probability per year or lifetime for a random member of the population or a member of a specific more exposed sub-population)
- incidence of resistance observed in animals.

7) Risk management options and risk communication

Risk management options and risk communication have to be continuously monitored and reviewed in order to ensure that the objectives are being achieved.

The relevant recommendations (Articles 1.3.2.7., 1.3.2.5. and 1.3.2.6.) in the Terrestrial Code apply.

A range of risk management options is available to minimize the emergence and spread of antimicrobial resistance and these include both regulatory and non-regulatory risk management options, such as the development of codes of practice concerning the use of antimicrobials in animal husbandry. Risk management decisions need to consider fully the implications of these different options for human health and animal health and welfare and also take into account economic considerations and any associated environmental issues. Effective control of certain bacterial diseases of animals will have the dual benefit of reducing the risks linked to antimicrobial resistance, in cases where the bacterial disease under consideration has also developed antimicrobial resistance. Appropriate communication with all stakeholders is essential throughout the risk assessment process.
GUIDELINES FOR THE SLAUGHTER OF ANIMALS FOR HUMAN CONSUMPTION

The ad hoc group approached its work by assessing the animal welfare concerns associated with every procedure during the pre-slaughter and slaughter processes, reviewing them on the basis of the available scientific data, independent of any religious or cultural context. Once those animal welfare concerns were qualified, the ad hoc group considered the specific issues associated with slaughter without stunning, such as the necessary restraint, the pain likely to be associated with the cut (for which it noted that there were no definitive data) and distress prior to unconsciousness (using available data to estimate the length of this period).

The ad hoc group acknowledged the significance of religious requirements, cultural and ethnic factors associated with some forms of slaughter. The ad hoc group felt it important that these should not be treated as exempt from these guidelines, which are intended to provide a framework within which variations to certain steps in the process may be practised to improve animal welfare.

The ad hoc group believed that methods of lairaging, and the moving and restraining of animals prior to and during religious slaughter are separate issues from religious slaughter requirements; with regard to restraint, there is a wide variation in methods, ranging from those with acceptable animal welfare to some which are totally unacceptable under any slaughter method. The ad hoc group also contended that some distressful and painful methods applied to conscious animals such as shackling and hoisting by the hind leg(s) or dragging by the leg(s) are not part of any religious requirements, are unacceptable in all circumstances, and should be phased out.

Article 1

General principles for slaughter

These guidelines address the need to ensure the welfare of food animals during pre-slaughter and slaughter processes, until they are dead.

These guidelines apply to those domestic animals commonly slaughtered in slaughterhouses, that is: cattle, buffalo, sheep, goats, deer, horses, pigs, ratites and poultry. Other animals, wherever they have been reared, should be managed to ensure that their transport, lairaging, restraint and slaughter is carried out without causing undue stress to the animals; the principles underpinning these guidelines apply also to these animals.

Personnel

Persons engaged in the unloading, moving, lairaging, care, restraining, stunning, slaughter and bleeding of animals play an important role in the welfare of those animals. For this reason, there should be a sufficient number of personnel, who should be patient, considerate, competent and familiar with the guidelines in this document and their application within the national context.

The management of the slaughterhouse and the Veterinary Services should ensure that slaughterhouse staff carry out their tasks in accordance with the principles of animal welfare.

Animal behaviour

Animal handlers should be experienced and competent in handling and moving farm livestock, and understand the behaviour patterns of animals and the underlying principles necessary to carry out their tasks.

The behaviour of individual animals or groups of animals will vary, depending on their breed, sex, temperament and age and the way in which they have been reared and handled. Despite these differences, the following behaviour patterns which are always present to some degree in domestic animals, should be taken into consideration in handling and moving the animals.
Appendix XXII (contd)

Most domestic livestock are kept in herds and follow a leader by instinct.

Animals which are likely to be hostile to each other in a group situation should not be mixed at slaughterhouses.

The desire of some animals to control their personal space should be taken into account in designing facilities.

Domestic animals will try to escape if an animal handler approaches closer than a certain distance. This critical distance, which defines the flight zone, varies among species and individuals of the same species, and depends upon previous contact with humans. Animals reared in close proximity to humans i.e. tame have no flight zone, whereas those kept in free range or extensive systems may have flight zones which may vary from one metre to many metres. Animal handlers should avoid sudden penetration of the flight zone which may cause a panic reaction which could lead to aggression or attempted escape.
Animal handlers should use the point of balance at an animal’s shoulder to move animals, adopting a position behind the point of balance to move an animal forward and in front of the point of balance to move it backward.

Domestic animals have wide-angle vision but only have limited forward binocular vision and poor perception of depth. This means that they can detect objects and movements beside and behind them, but can only judge distances directly ahead.

Although all domestic animals have a highly sensitive sense of smell, they react in different ways to the smells of slaughterhouses. Smells which cause fear or other negative responses should be taken into consideration when managing animals.
Appendix XXII (contd)

Domestic animals can hear over a greater range of frequencies than humans and are more sensitive to higher frequencies. They tend to be alarmed by constant loud noise and by sudden noises, which may cause them to panic.

Distractions and their removal
Distractions that may cause approaching animals to stop, baulk or turn back should be designed out from new facilities or removed from existing ones. Below are examples of common distractions and methods for eliminating them:

- Reflections on shiny metal or wet floors - move a lamp or change lighting.
- Dark entrances to chutes, races, stun boxes or conveyor restrainers - illuminate with indirect lighting which does not shine directly into the eyes of approaching animals.
- Animals seeing moving people or equipment up ahead - install solid sides on chutes and races or install shields.
- Chains or other loose objects hanging in chutes or on fences - remove them.
- Uneven floors or a sudden drop in floor levels at the entrance to conveyor restrainers – avoid uneven floor surfaces or install a solid false floor under the restrainer to provide an illusion of a solid and continuous walking surface.
- Sounds of air hissing from pneumatic equipment - install silencers or use hydraulic equipment.
- Clanging and banging of metal objects - install rubber stops on gates and other devices to reduce metal to metal contact.
- Air currents from fans or air curtains blowing into the face of animals - redirect or reposition equipment.

Article 2
Moving and handling animals
The following principles should apply to unloading animals, moving them into lairage pens, out of the lairage pens and up to the slaughter point:

- The conditions of the animals should be assessed upon their arrival for any animal welfare problems.
- Injured or sick animals, requiring immediate slaughter, should be killed humanely at the site where they are found.
- The use of force on animals that have little or no room to move should not occur.
- The use of instruments which administer electric shocks (e.g. goads and prods) and their power output should be restricted to that necessary to assist movement of the animals. If such use is necessary, it should be limited to the hindquarters of pigs and large ruminants, and never on sensitive areas such as the eyes, mouth, ears, anogenital region or belly. Such instruments should not be used on horses, sheep and goats of any age, or on calves or piglets, nor on animals that have little or no room to move.
- Performance standards should be established in which numerical scoring is used to evaluate the use of such instruments and to measure the percentage of animals moved with an electric instrument. In properly designed and constructed facilities with competent animal handlers, it should be possible to move 75% or more of the animals without the use of electric instruments.
• Useful and permitted aids for moving animals include panels, flags, plastic paddles, flappers (a length of cane with a short strap of leather or canvas attached), plastic bags and metallic rattles; they should be used in a manner sufficient to encourage and direct movement of the animals but without physical contact with them.

• Shouting or yelling at animals to encourage them to move should not occur as such actions may make the animals agitated, leading to crowding or falling.

• Implements which cause pain and suffering such as large sticks, sticks with sharp ends, metal piping, fencing wire or heavy leather belts should not be used to move animals.

• Animals should be grasped or lifted in a manner which avoids pain or suffering and physical damage (e.g. bruising, fractures, dislocations). In the case of quadrupeds, manual lifting by a person should only be used in young animals or small species, and in a manner appropriate to the species; grasping or lifting such animals only by their wool, hair, feet, neck, ears or tails causing pain or suffering should not be permitted, except in an emergency where animal welfare or human safety may otherwise be compromised.

• Conscious animals should not be thrown or dragged.

• Animals should not be forced to move at a speed greater than their normal walking pace, in order to minimise injury through falling or slipping. Performance standards should be established where numerical scoring of the prevalence of animals slipping or falling is used to evaluate whether animal moving practices and/or facilities should be improved. In properly designed and constructed facilities with competent animal handlers, it should be possible to move 99% of animals without their falling.

• Animal handlers should not force an animal to walk over the top of other animals.

• Under no circumstances should animal handlers resort to violent acts to move animals, such as crushing or breaking animals’ tails, grasping animals’ eyes or pulling them by their ears. Animal handlers should never apply an injurious object or irritant substance to sensitive areas such as eyes, mouth, ears, anogenital region or belly.

Requirements for animals delivered in containers

• Containers in which animals are transported should be handled with care, and should not be thrown, dropped or knocked over. Where possible, they should be loaded and unloaded horizontally and mechanically.

• Animals delivered in containers with perforated or flexible bottoms should be unloaded with particular care in order to avoid injury. Where appropriate, animals should be unloaded from the containers individually.

• Animals which have been transported in containers should be slaughtered as soon as possible; mammals and ratites which are not taken directly upon arrival to the place of slaughter should have drinking water available to them from appropriate facilities at all times. Delivery of poultry for slaughter should be scheduled such that they are not deprived of water at the premises for longer than 12 hours. Animals which have not been slaughtered within 12 hours of their arrival should be fed, and should subsequently be given moderate amounts of food at appropriate intervals.
Appendix XXII (contd)

Provision relevant to restraining and containing animals

Provisions relevant to restraining animals for stunning or slaughter without stunning, to help maintain animal welfare include:

- Provision of a non-slip floor
- Avoidance of excessive pressure applied by restraining equipment that causes struggling or vocalisation in animals
- Equipment engineered to reduce noise of air hissing and clanging metal
- Absence of sharp edges in restraining equipment that would harm animals
- Avoidance of jerking or sudden movement of restraining device

Methods of restraint causing avoidable suffering, such as the following, should not be used in conscious animals because they cause severe pain and stress:

- suspending or hoisting animals (other than poultry) by the feet or legs
- indiscriminate and inappropriate use of stunning equipment
- mechanical clamping of an animal’s legs or feet (other than shackles used in poultry and ostriches) as the sole method of restraint
- breaking legs, cutting leg tendons or blinding animals in order to immobilise them
- severing the spinal cord, for example using a puntilla or dagger, to immobilise animals
- using electric currents to immobilise animals, except for proper stunning.

Article 3

Lairage design and construction

The lairage should be designed and constructed to hold an appropriate number of animals in relation to the throughput rate of the slaughterhouse without compromising the welfare of the animals.

In order to permit operations to be conducted as smoothly and efficiently as possible without injury or undue stress to the animals, the lairage areas should be designed and constructed so as to allow the animals to move freely in the required direction, using their behavioural characteristics and without undue penetration of their flight zone.

The following guidelines may help to achieve this.

Design

- The lairage should be designed to allow a one-way flow of animals from unloading to the point of slaughter, with a minimum of abrupt corners to negotiate.
- In red meat slaughterhouses, pens, passageways and races should be arranged in such a way as to permit inspection of animals at any time, and to permit the removal of sick or injured animals when considered to be appropriate, for which separate appropriate accommodation should be provided.
Appendix XXII (contd)

- Each animal should have room to stand up and lie down and, when confined in a pen, to turn around. The lairage should have sufficient accommodation for the number of animals intended to be held. Drinking water should always be available to the animals, and the method of delivery should be appropriate to the type of animal held. Troughs should be designed and installed in such a way as to minimise the risk of fouling by faeces, without introducing risk of bruising and injury in animals, and should not hinder the movement of animals.

- Holding pens should be rectangular rather than square, to allow as many animals as possible to stand or lie down against a wall. Where feed troughs are provided, they should be sufficient in number and feeding space to allow adequate access of all animals to feed. The feed trough should not hinder the movement of animals.

- Where tethers, ties or individual stalls are used, these should be designed so as not to cause injury or distress especially when the animals are lying down, standing up, drinking and feeding.

- Passageways and races should be either straight or slightly curved, as appropriate to the animal species. Passageways and races should have solid sides, but when there is a double race the shared partition should allow adjacent animals to see each other. For pigs and sheep, passageways should be wide enough to enable two or more animals to walk side by side for as long as possible. At the point where passageways are reduced in width, this should be done by a means which prevents excessive bunching of the animals.

- Animal handlers should be positioned alongside races and passageways on the inside radius of any curve, to take advantage of the natural tendency of animals to circle an intruder. Where one-way gates are used, they should be of a design which avoids bruising. Races should be horizontal but where there is a slope, they should be constructed to allow the free movement of animals without injury.

- There should be a waiting pen, with a level floor and solid sides, between the holding pens and the race leading to the point of stunning or slaughter, to ensure a steady supply of animals for stunning or slaughter and to avoid having animal handlers trying to rush animals from the holding pens. The waiting pen should preferably be circular, but in any case, so designed that animals cannot be trapped or trampled.

- Ramps or lifts should be used for loading and unloading of animals where there is a difference in height or a gap between the floor of the vehicle and the unloading area. The ramp should be well drained, non-slippery and adjustable to facilitate easy movement of animals without causing distress or injury.

Construction

- Lairages should be constructed and maintained so as to provide protection from unfavourable climatic conditions, using strong and resistant materials such as concrete and metal which has been treated to prevent corrosion. Surfaces should be easy to clean. There should be no sharp edges or protuberances which may injure the animals.

- Floors should be well drained and not slippery; they should not cause injury to the animals' feet. Where necessary floors should be insulated or provided with appropriate bedding. Drainage grids should be placed at the sides of pens and passageways and not where animals would have to cross them. Discontinuities or changes in floor patterns or texture which could cause baulking in the movement of animals should be avoided.
Appendix XXII (contd)

- Lairages should be provided with adequate lighting, but care should be taken to avoid harsh lights and shadows, which frighten the animals or affect their movement. The fact that animals will move more readily from a darker area into a well-lit area might be exploited by providing for lighting that can be regulated accordingly.

- Lairages should be well ventilated, and the air flow should be arranged so that odours and draughts do not adversely affect the health and welfare of the animals.

- Care should be taken to protect the animals from excessively or potentially disturbing noises, for example by avoiding the use of noisy hydraulic or pneumatic equipment, and muffling noisy metal equipment by the use of suitable padding, or by minimising the transmission of such noise to the areas where animals are held and slaughtered.

- Where animals are kept in outdoor lairages without natural shelter or shade, they should be protected from the effects of adverse weather conditions.

Article 4

Care in lairages

Animals in lairages should be cared for in accordance with the following guidelines:

- As far as possible established groups of animals should be kept together. Each animal should have enough space to stand up, lie down and turn around. Animals hostile to each other should be separated.

- Where tethers, ties or individual stalls are used they should allow animals to stand up and lie down without causing injury or distress.

- Where bedding is provided, it should be maintained in a condition that minimises risks to the health and safety of the animals, and sufficient should be used so that animals do not become soiled with manure.

- Animals should be kept securely in the lairage and care should be taken to prevent them from escaping and from predators.

- Suitable drinking water should be available to the animals on their arrival and at all times to animals in lairages unless they are to be slaughtered without delay.

- If animals are not to be slaughtered as soon as possible, suitable feed should be available to the animals on arrival and at intervals appropriate to the species. Unweaned animals should be slaughtered as soon as possible.

- In order to prevent heat stress, animals subjected to high temperatures, particularly pigs and poultry, should be cooled by the use of water sprays, fans or other suitable means.

- That lairage area should be well lit in order to enable the animals to see clearly without being dazzled. During the night, the lights should be dimmed.

- The condition and state of health of the animals in a lairage should be inspected at least every morning and evening by a veterinarian or, under the latter’s responsibility, by another competent person. Animals which are sick, weak, injured or showing visible signs of distress should be treated or killed immediately.

- Lactating dairy animals should be slaughtered as soon as possible. Dairy animals with obvious udder distension should be milked to minimise udder discomfort.
• Pregnant animals giving birth during the journey or in the lairage should be slaughtered as soon as possible or provided with conditions which are appropriate for suckling and the welfare of the newborn.

• Animals with horns or tusks capable of injuring other animals, if aggressive, should be penned separately.

Recommendations for specific species are described in detail in Articles 6-9.

Article 5

Management of foetuses during slaughter of pregnant animals

The welfare of foetuses during slaughter of pregnant animals needs to be safeguarded.

• Foetuses should not be removed from the uterus sooner than five minutes after the maternal neck or chest cut, to ensure absence of consciousness. A foetal heartbeat will usually still be present and foetal movements may occur at this stage, but these are only a cause for concern if the exposed foetus successfully breathes air.

• If a live mature foetus is removed from the uterus, it should be prevented from inflating its lungs and breathing air (e.g. by clamping the trachea).

• When uterine, placental or foetal tissues, including foetal blood, are not to be collected as part of the post-slaughter processing of pregnant animals, all foetuses should be left inside the unopened uterus until they are dead. When uterine, placental or foetal tissues are to be collected, where practical, foetuses should not be removed from the uterus until at least 15-20 minutes after the maternal neck or chest cut.

• If there is any doubt about consciousness, the foetus should be killed with a captive bolt or a blow to the head with a suitable blunt instrument.

The above guidelines do not refer to foetal rescue. Foetal rescue, the practice of attempting to revive foetuses found alive at evisceration of the dam, should not be attempted during normal commercial slaughter as it may lead to serious welfare complications in the newborn animal. These include impaired brain function resulting from oxygen shortage before rescue is completed, compromised breathing and body heat production because of foetal immaturity, and an increased incidence of infections due to a lack of colostrum.
Article 6

Summary of acceptable handling and restraining methods, and the associated animal welfare issues

<table>
<thead>
<tr>
<th>Presentation of animals</th>
<th>Specific procedure</th>
<th>Specific purpose</th>
<th>AW concerns/implications</th>
<th>Key AW requirements</th>
<th>Applicable species</th>
</tr>
</thead>
<tbody>
<tr>
<td>No restraint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animals are grouped</td>
<td>Group container</td>
<td>Gas stunning</td>
<td>Specific procedure is suitable only for gas stunning</td>
<td>Competent animal handlers in lairage; facilities; stocking density</td>
<td>Pigs, poultry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restraining methods

<table>
<thead>
<tr>
<th>Presentation of animals</th>
<th>Specific procedure</th>
<th>Specific purpose</th>
<th>AW concerns/implications</th>
<th>Key AW requirements</th>
<th>Applicable species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual animal confinement</td>
<td>Stunning pen/box</td>
<td>Electrical and mechanical stunning methods</td>
<td>Loading of animal; accuracy of stunning method, slippery floor and animal falling down</td>
<td>Competent animal handlers</td>
<td>Cattle, buffalo, sheep, goats, horses, pigs, deer, camelids, ratites</td>
</tr>
</tbody>
</table>

Restraining methods

<table>
<thead>
<tr>
<th>Presentation of animals</th>
<th>Specific procedure</th>
<th>Specific purpose</th>
<th>AW concerns/implications</th>
<th>Key AW requirements</th>
<th>Applicable species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head restraint, upright</td>
<td>Halter/ head collar/bridle</td>
<td>Captive bolt</td>
<td>Suitable for halter-trained animals; stress in untrained animals</td>
<td>Competent animal handlers</td>
<td>Cattle, buffalo, horses, camelids</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presentation of animals</th>
<th>Specific procedure</th>
<th>Specific purpose</th>
<th>AW concerns/implications</th>
<th>Key AW requirements</th>
<th>Applicable species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head restraint, upright</td>
<td>Neck yoke</td>
<td>Captive bolt Electrical-head-only Free bullet Slaughter without stunning</td>
<td>Stress of loading and neck capture; stress of prolonged restraint, horn configuration; unsuitable for fast line speeds, animals struggling and falling due to slippery floor, excessive pressure</td>
<td>Equipment; competent animal handlers, prompt stunning or slaughter</td>
<td>Cattle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presentation of animals</th>
<th>Specific procedure</th>
<th>Specific purpose</th>
<th>AW concerns/implications</th>
<th>Key AW requirements</th>
<th>Applicable species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leg restraint</td>
<td>Single leg tied in flexion (animal standing on 3 legs)</td>
<td>Captive bolt Free bullet</td>
<td>Ineffective control of animal movement, misdirected shots</td>
<td>Competent animal handler</td>
<td>Breeding pigs (boars and sows)</td>
</tr>
<tr>
<td>Restraining methods</td>
<td>Presentation of animals</td>
<td>Specific procedure</td>
<td>Specific purpose</td>
<td>AW concerns/implications</td>
<td>Key AW requirements</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Upright restraint</td>
<td>Beak holding</td>
<td>Captive bolt</td>
<td>Stress of capture</td>
<td>Sufficient competent animal handlers</td>
<td>Ostriches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical-head-only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head restraint in electrical stunning box</td>
<td>Electrical-head-only</td>
<td>Stress of capture and positioning</td>
<td>Competent animal handler</td>
<td>Ostriches</td>
<td></td>
</tr>
<tr>
<td>Holding body upright- manual</td>
<td>Manual restraint</td>
<td>Captive bolt Electrical-head-only Slaughter without stunning</td>
<td>Stress of capture and restraint; accuracy of stunning/slaughter</td>
<td>Competent animal handlers</td>
<td>Sheep, goats, calves, ratites, small camelids, poultry</td>
</tr>
<tr>
<td>Holding body upright mechanical</td>
<td>Mechanical clamp / crush / squeeze/ V-restrainer (static)</td>
<td>Captive bolt Electrical methods Slaughter without stunning</td>
<td>Loading of animal and overriding; excessive pressure</td>
<td>Proper design and operation of equipment</td>
<td>Cattle, buffalo, sheep, goats, deer, pigs, ostriches</td>
</tr>
<tr>
<td>Lateral restraint – manual or mechanical</td>
<td>Restrainer/cradle/cratch</td>
<td>Slaughter without stunning</td>
<td>Stress of restraint</td>
<td>Competent animal handlers</td>
<td>Sheep, goats, calves, camelids, cattle</td>
</tr>
<tr>
<td>Upright restraint mechanical</td>
<td>Mechanical straddle (static)</td>
<td>Slaughter without stunning Electrical methods Captive bolt</td>
<td>Loading of animal and overriding</td>
<td>Competent animal handlers</td>
<td>Cattle, sheep, goats, pigs</td>
</tr>
<tr>
<td>Upright restraint – manual or mechanical</td>
<td>Wing shackling</td>
<td>Electrical</td>
<td>Excessive tension applied prior to stunning</td>
<td>Competent animal handlers</td>
<td>Ostriches</td>
</tr>
<tr>
<td>Restraining and/or conveying methods</td>
<td>Presentation of animals</td>
<td>Specific procedure</td>
<td>Specific purpose</td>
<td>AW concerns/implications</td>
<td>Key AW requirements</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Mechanical - upright</td>
<td>V-restrainer</td>
<td>Electrical methods</td>
<td>Loading of animal and overriding; excessive pressure, size mismatch between restrainer and animal</td>
<td>Proper design and operation of equipment</td>
<td>Cattle, calves, sheep, goats, pigs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Captive bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slaughter without stunning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical - upright</td>
<td>Mechanical straddle – band restrainer (moving)</td>
<td>Electrical methods</td>
<td>Loading of animal and overriding, size mismatch between restrainer and animal</td>
<td>Competent animal handlers, proper design and layout of restraint</td>
<td>Cattle, calves, sheep, goats, pigs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Captive bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slaughter without stunning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat bed/deck</td>
<td>Presentation of birds for shackling prior to electrical stunning</td>
<td>Stress and injury due to tipping in dump-module systems; height of tipping conscious poultry; broken bones and dislocations</td>
<td>Proper design and operation of equipment</td>
<td>Poultry</td>
</tr>
<tr>
<td></td>
<td>Tipped out of containers on to conveyors</td>
<td>Gas stunning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension and/or inversion</td>
<td>Poultry shackle</td>
<td>Electrical stunning</td>
<td>Inversion stress; pain from compression on leg bones</td>
<td>Competent animal handlers; proper design and operation of equipment</td>
<td>Poultry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slaughter without stunning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension and/or inversion</td>
<td>Cone</td>
<td>Electrical – head-only; Captive bolt Slaughter without stunning</td>
<td>Inversion stress</td>
<td>Competent animal handlers; proper design and operation of equipment</td>
<td>Poultry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upright restraint</td>
<td>Mechanical leg clamping</td>
<td>Electrical – head-only</td>
<td>Stress of resisting restraint in ostriches</td>
<td>Competent animal handlers; proper equipment design and operation</td>
<td>Ostriches</td>
</tr>
<tr>
<td>Presentation of animals</td>
<td>Specific procedure</td>
<td>Specific purpose</td>
<td>AW concerns/implications</td>
<td>Key AW requirements</td>
<td>Applicable species</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Restraining by inversion</td>
<td>Rotating box</td>
<td>Fixed side(s) (e.g. Weinberg)</td>
<td>Slaughter without stunning</td>
<td>Inversion stress; stress of resisting restraint, prolonged restraint. Keep restraint as brief as possible</td>
<td>Proper design and operation of equipment</td>
</tr>
<tr>
<td></td>
<td>Compressible side(s)</td>
<td>Slaughter without stunning</td>
<td>Inversion stress, stress of resisting restraint, prolonged restraint. Preferable to rotating box with fixed sides; Keep restraint as brief as possible</td>
<td>Proper design and operation of equipment</td>
<td>Cattle</td>
</tr>
<tr>
<td>Body restraint</td>
<td>Casting/ hobbling</td>
<td>Manual</td>
<td>Mechanical stunning methods</td>
<td>Stress of resisting restraint; animal temperament; bruising. Keep restraint as short as possible</td>
<td>Competent animal handlers</td>
</tr>
<tr>
<td>Leg restraints</td>
<td>Rope casting</td>
<td>Mechanical stunning methods</td>
<td>Slaughter without stunning</td>
<td>Stress of resisting restraint; prolonged restraint, animal temperament; bruising. Keep restraint as short as possible</td>
<td>Competent animal handlers</td>
</tr>
<tr>
<td></td>
<td>Tying of 3 or 4 legs</td>
<td>Mechanical stunning methods</td>
<td>Slaughter without stunning</td>
<td>Stress of resisting restraint; prolonged restraint, animal temperament; bruising. Keep restraint as short as possible</td>
<td>Competent animal handlers</td>
</tr>
</tbody>
</table>
Appendix XXII (contd)

Article 7

Stunning methods

Stunning

The competence of the operators, and the appropriateness and effectiveness of the method used for stunning are the responsibility of the management of the slaughterhouse, and should be checked regularly by a competent authority.

Persons carrying out stunning should be properly trained and competent, and should ensure that:

- the animal is adequately restrained;
- animals in restraint are stunned as soon as possible;
- the equipment used for stunning is maintained and operated properly in accordance with the manufacturer's recommendations, in particular with regard to the species and size of the animal;
- the instrument is applied correctly;
- stunned animals are bled out (slaughtered) as soon as possible,
- do not stun animals when slaughter is likely to be delayed.

In addition, such persons should be able to recognise when an animal is not correctly stunned and should take appropriate action.

Mechanical stunning

A mechanical device should be applied usually to the front of the head and perpendicular to the bone surface. The following diagrams illustrate the proper application of the device for certain species.

Cattle

The optimum position for cattle is at the intersection of two imaginary lines drawn from the rear of the eyes to the opposite horn buds.
Appendix XXII (contd)

Pigs

The optimum position for pigs is just above the eyes and directing the shot down the line of the spinal chord.

Sheep

The optimum position for hornless sheep and goats is on the midline, just above the eyes and directing the shot down the line of the spinal chord.

Goats

The optimum position for heavily horned sheep and horned goats is behind the poll, aiming towards the angle of the jaw.
Appendix XXII (contd)

Horses

Place the muzzle at right angles to the frontal surface well above the point where imaginary lines from eye to ear cross.

Signs of correct stunning using a mechanical instrument:

i) the animal collapses immediately and does not attempt to stand up;

ii) the body and muscles of the animal become tonic (rigid) immediately after the shot;

iii) normal rhythmic breathing stops; and

iv) the eyelid is open with the eyeball facing straight ahead and is not rotated.

Electrical stunning

a) General

An electrical device should be applied to the animal in accordance with the following guidelines.

Electrodes should be designed, constructed, maintained and cleaned regularly to ensure that the flow of current is optimal and in accordance to manufacturing specification. They should be placed so that they span the brain. The application of electrical currents which bypass the brain are unacceptable unless the animal has been stunned. The use of a single current leg-to-leg is unacceptable as a stunning method.

If, in addition, it is intended to cause cardiac arrest, the electrodes should either span the brain and immediately thereafter the heart, on the condition that it has been ascertained that the animal is adequately stunned, or span brain and heart simultaneously.

Electrical stunning equipment should not applied on animals as a means of guidance, movement, restraint or immobilisation, and shall not deliver any shock to the animal before the actual stunning or killing.

Electrical stunning apparatus should be tested prior to application on animals using appropriate resistors or dummy loads to ensure the power output is adequate to stun animals.

The apparatus should incorporate a device which monitors and displays stunning current delivered to the animals.
Appropriate measures, such as removing excess wool or wetting the skin only at the point of contact can be taken to minimise impedance of the skin and facilitate effective stunning.

The stunning apparatus requires for electrical stunning should be provided with adequate power to achieve continuously the minimum current level recommended for stunning as indicated in the table below:

<table>
<thead>
<tr>
<th>Species</th>
<th>Minimum current levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>1.5 amps</td>
</tr>
<tr>
<td>Calves</td>
<td>1.0 amps</td>
</tr>
<tr>
<td>Pigs</td>
<td>1.25 amps</td>
</tr>
<tr>
<td>Sheep & Goats</td>
<td>0.5 amps</td>
</tr>
<tr>
<td>Ostriches</td>
<td>0.4 amps</td>
</tr>
</tbody>
</table>

In all cases, the correct current level shall be attained within one second of the initiation of the stun and maintained at least for between one and three seconds and in accordance with the manufacturer's instructions.

b) Electrical stunning of birds using a waterbath

In the case of birds suspended on a moving line, measures should be taken to ensure that the birds are not wing flapping at the entrance of the stunner. The birds should be secure in their shackle, but there should not be undue pressure on their shanks.

Waterbaths for poultry should be adequate in size and depth for the type of bird being slaughtered, and their height should be adjustable to allow for the head of each bird to be immersed. The electrode immersed in the bath should extend the full length of the waterbath. Birds should be immersed in the bath up to the base of their wings.

The waterbath should be designed and maintained in such a way that when the shackles pass over the water they are in continuous contact with the earthed rubbing bar.

The control box for the waterbath stunner should incorporate an ammeter which displays the total current flowing through the birds.

The shackle-to-leg contact should be wetted preferably before the birds are inserted in the shackles. In order to improve electrical conductivity of the water it is recommended that salt be added in the waterbath as necessary.

Birds should receive the current for at least 4 seconds.

Using waterbaths, birds are stunned in groups and different birds will have different impedances. The voltage should be adjusted so that the total current is the required current per bird as shown in the table hereafter, multiplied by the number of birds in the waterbath at the same time.
Appendix XXII (contd)

The following values have been found to be satisfactory when employing a 50 Hertz sinusoidal alternating current.

<table>
<thead>
<tr>
<th>Species</th>
<th>Current (milliamperes per bird)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broilers</td>
<td>120</td>
</tr>
<tr>
<td>Layers (spent hens)</td>
<td>120</td>
</tr>
<tr>
<td>Turkeys</td>
<td>150</td>
</tr>
<tr>
<td>Ducks and Geese</td>
<td>130</td>
</tr>
</tbody>
</table>

While a lower current may also be satisfactory, the current shall in any case be such as to ensure that unconsciousness occurs immediately and lasts until the bird has been killed by cardiac arrest or by bleeding. When higher electrical frequencies are used, higher currents may be required.

Every effort shall be made to ensure that no conscious or live birds enter the scalding tank.

In the case of automatic systems, until fail-safe systems of stunning and bleeding have been introduced, a manual back-up system should be in place to ensure that any birds which have missed the waterbath stunning and/or the automatic neck-cutter are immediately stunned and/or humanely killed, and they are dead before entering scald tank.

To lessen the number of unstunned birds, reaching neck cutters, steps should be taken to ensure that small birds do not go on the line amongst bigger birds and that these small birds are stunned separately.

Gas stunning

a) Stunning of pigs by exposure to carbon dioxide (CO₂)

The concentration of CO₂ for stunning should be preferably 90% by volume but in any case no less than 80% by volume. After entering the stunning chamber the animals should be conveyed to the point of maximum concentration of the gas and be kept until they are dead or brought into a state of insensibility which lasts until death occur due to bleeding. Ideally, pigs should be exposed to this concentration of CO₂ for three minutes.

In any case, the concentration of the gas should be such that it minimises as far as possible all stress of the animal prior to loss of consciousness.

The chamber in which animals are exposed to CO₂ and the equipment used for conveying them through it shall be designed, constructed and maintained in such a way as to avoid injury or unnecessary stress to the animals. The animal density within the chamber should be such to avoid stacking animals on top of each others.

The conveyor and the chamber shall be adequately lit to allow the animals to see their surroundings and if possible, each other.

It should be possible to inspect the CO₂ chamber whilst it is in use, and to have access to the animals in emergency cases.
The chamber shall be equipped to continuously measure and display register at the point of stunning the CO\textsubscript{2} concentration and the time of exposure, and to give a clearly visible and audible warning if the concentration of CO\textsubscript{2} falls below the required level.

\textit{b) Inert gas mixtures for stunning pigs (under development)}

Inhalation of high concentration of carbon dioxide is aversive and can be distressing to animals. Therefore, the use of non-aversive gas mixtures is being developed.

Gas mixtures:

i) a maximum of 2\% by volume of oxygen in argon, nitrogen or other inert gases, or

ii) to a maximum of 30\% by volume of carbon dioxide and a maximum of 2\% by volume of oxygen in mixtures with carbon dioxide and argon, nitrogen or other inert gases.

Exposure time to the gas mixtures should be sufficient to ensure that no pigs regain consciousness before death supervenes through bleeding or cardiac arrest is induced.

\textit{c) Gas stunning of poultry}

The main objective of gas stunning is to avoid the pain and suffering associated with shackling conscious poultry under water bath stunning and killing systems. Therefore, gas stunning should be limited to birds contained in crates or on conveyors only. The gas mixture should be non-aversive to poultry.

Gas stunning of poultry in their transport containers will eliminate the need for live bird handling at the processing plant and all the problems associated with the electrical stunning.

Gas stunning poultry on a conveyor eliminates the problems associated with the electrical water bath stunning.

Live poultry shall be conveyed into the gas mixtures either in transport crates or on conveyor belts.

i) Gas mixtures used for stunning poultry

- Minimum of 2 min exposure to 40\% carbon dioxide, 30\% oxygen and 30\% nitrogen, followed by a minimum of 1 min exposure to 80\% carbon dioxide in air; or

- Minimum of 2 min exposure to any mixture of argon, nitrogen or other inert gases with atmospheric air and carbon dioxide, provided that the carbon dioxide concentration does not exceed 30\% by volume and the residual oxygen concentration does not exceed 2\% by volume; or

- Minimum of 2 min exposure to argon, nitrogen, other inert gases or any mixture of these gases in atmospheric air with a maximum of 2\% residual oxygen by volume; or

- Minimum of 2 minutes exposure to a minimum of 55\% carbon dioxide in air.

ii) Requirements for effective use:

- Compressed gases should be vaporised prior to administration into the chamber.

- Under no circumstances, should solid gases with freezing temperatures enter the chamber.

- Gas mixtures should be humidified.

- Appropriate gas concentrations should be monitored and displayed continuously at the level of the birds inside the chamber.
Appendix XXII (contd)

Under no circumstances should birds exposed to gas mixtures be allowed to regain consciousness. If necessary, the exposure time should be extended.

Bleeding

From the point of view of animal welfare, animals which are stunned with a reversible method should be bled without delay and in any case within the following time limits:

<table>
<thead>
<tr>
<th>Stunning method</th>
<th>Maximum delay for bleeding to be started</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical methods and non penetrating bolt</td>
<td>20 seconds</td>
</tr>
<tr>
<td>CO₂</td>
<td>60 seconds (after leaving the chamber)</td>
</tr>
</tbody>
</table>

All animals should be bled by incising both carotid arteries, or the vessels from which they arise (e.g. chest stick). However, when the stunning method used causes cardiac arrest, the incision of all of these vessels is not necessary from the point of animal welfare.

It should be possible for staff to observe, inspect and access the animals throughout the bleeding period. Any animal showing signs of recovering consciousness should be restunned.

After incision of the blood vessels, no scalding carcass treatment or dressing procedures should be performed on the animals for at least thirty seconds, or in any case until all brain-stem reflexes have ceased.
Article 8

Summary of acceptable stunning methods and the associated animal welfare issues

<table>
<thead>
<tr>
<th>Method</th>
<th>Specific method</th>
<th>AW concerns/implications</th>
<th>Key AW requirements applicable</th>
<th>Species</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>Free bullet</td>
<td>Inaccurate targeting and inappropriate ballistics</td>
<td>Accuracy applicable</td>
<td>Cattle, calves, buffalo, deer, horses, pigs (boars and sows)</td>
<td>Personnel safety</td>
</tr>
<tr>
<td></td>
<td>Captive bolt - penetrating</td>
<td>Inaccurate targeting, velocity and diameter of bolt</td>
<td>Competent operation and maintenance of equipment; restraint; accuracy</td>
<td>Cattle, calves, buffalo, sheep, goats, deer, horses, pigs, camelids, ratites</td>
<td>(Unsuitable for specimen collection from TSE suspects). A back-up gun should be available in the event of an ineffective shot</td>
</tr>
<tr>
<td></td>
<td>Captive bolt - non-penetrating</td>
<td>Inaccurate targeting, velocity of bolt, potentially higher failure rate than penetrating captive bolt</td>
<td>Competent operation and maintenance of equipment; restraint; accuracy</td>
<td>Cattle, calves, sheep, goats, deer, pigs, camelids, ratites</td>
<td>Presently available devices are not recommended for young bulls and animals with thick skull</td>
</tr>
<tr>
<td></td>
<td>Manual percussive blow</td>
<td>Inaccurate targeting; insufficient power; size of instrument</td>
<td>Competent animal handlers; restraint; accuracy. Not recommended for general use</td>
<td>Young and small mammals, ostriches and poultry</td>
<td>Mechanical devices potentially more reliable. Where manual percussive blow is used, unconsciousness should be achieved with single sharp blow delivered to central skull bones</td>
</tr>
<tr>
<td>Electrical</td>
<td>Split application: 1. across head then head to chest; 2. across head then across chest</td>
<td>Accidental pre-stun electric shocks; electrode positioning; application of a current to the body while animal conscious; inadequate current and voltage</td>
<td>Competent operation and maintenance of equipment; restraint; accuracy</td>
<td>Cattle, calves, sheep, goats and pigs, ratites and poultry</td>
<td>Systems involving repeated application of head-only or head-to-leg with short current durations (<1 second) in the first application should not be used. Where cardiac arrest occurs, the carcass may not be suitable for Halal</td>
</tr>
</tbody>
</table>

OIE Terrestrial Animal Health Standards Commission/January 2005
Appendix XXII (contd)

<table>
<thead>
<tr>
<th>Method</th>
<th>Specific method</th>
<th>AW concerns/implications</th>
<th>Key AW requirements applicable</th>
<th>Species</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Single application:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. head only;</td>
<td>Accidental pre-stun electric shocks; inadequate current and voltage; wrong electrode</td>
<td>Competent operation and maintenance of equipment; restraint; accuracy</td>
<td>Cattle, calves, sheep,</td>
<td>Where cardiac arrest occurs, the carcass may not be suitable for Halal</td>
</tr>
<tr>
<td></td>
<td>2. head to body;</td>
<td>positioning; recovery of consciousness</td>
<td></td>
<td>goats, pigs, ratites,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. head to leg</td>
<td></td>
<td></td>
<td>poultry</td>
<td></td>
</tr>
<tr>
<td>Waterbath</td>
<td>Restraint, accidental pre-stun electric</td>
<td></td>
<td></td>
<td>Poultry only</td>
<td>Where cardiac arrest occurs, the carcass may not be suitable for Halal</td>
</tr>
<tr>
<td></td>
<td>shocks; inadequate current and voltage;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>recovery of consciousness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaseous</td>
<td>CO₂ air/O₂ mixture; CO₂ inert gas</td>
<td>Aversiveness of high CO₂; respiratory distress; inadequate exposure</td>
<td>Concentration; duration of exposure; design, maintenance and operation of equipment; stocking</td>
<td>Pigs, poultry</td>
<td>Gaseous methods may not be suitable for Halal</td>
</tr>
<tr>
<td></td>
<td>mixture</td>
<td></td>
<td>density management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inert gases</td>
<td></td>
<td>Recovery of consciousness</td>
<td>Concentration; duration of exposure; design, maintenance and operation of equipment; stocking</td>
<td>Pigs, poultry</td>
<td>Gaseous methods may not be suitable for Halal</td>
</tr>
</tbody>
</table>
Article 9

Summary of acceptable slaughter methods, and the associated animal welfare issues

<table>
<thead>
<tr>
<th>Slaughter methods</th>
<th>Specific method</th>
<th>AW concerns / implications</th>
<th>Key requirements</th>
<th>Species</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding out by severance of blood vessels in the neck without stunning</td>
<td>Full frontal cutting across the throat</td>
<td>Failure to cut both common carotid arteries; occlusion of cut arteries</td>
<td>A very sharp blade or knife, of sufficient length so that the point of the knife remains outside the incision during the cut; the point of the knife should not be used to make the incision. An incision which does not close over the knife during the throat cut.</td>
<td>Cattle, buffalo, horses, camelids, sheep, goats, poultry, ratites</td>
<td>This method is applicable to Halal and Kosher for relevant species</td>
</tr>
<tr>
<td>Bleeding with prior stunning</td>
<td>Neck stab followed by forward cut</td>
<td>Ineffective stunning; failure to cut both common carotid arteries; impaired blood flow; delay in cutting after reversible stunning</td>
<td>Prompt and accurate cutting;</td>
<td>Camelids, sheep, goats, poultry, ratites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neck stab alone</td>
<td>Ineffective stunning; failure to cut both common carotid arteries; impaired blood flow; delay in cutting after reversible stunning</td>
<td>Prompt and accurate cutting</td>
<td>Camelids, sheep, goats, poultry, ratites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chest stick into major arteries or hollow-tube knife into heart</td>
<td>Ineffective stunning; Inadequate size of stick wound inadequate length of sticking knife; delay in sticking after reversible stunning</td>
<td>Prompt and accurate sticking;</td>
<td>Cattle, sheep, goats, pigs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neck skin cut followed by severance of vessels in the neck</td>
<td>Ineffective stunning; Inadequate size of stick wound; Inadequate length of sticking knife; delay in sticking after reversible stunning</td>
<td>Prompt and accurate cutting of vessels</td>
<td>Cattle</td>
<td></td>
</tr>
</tbody>
</table>

OIE Terrestrial Animal Health Standards Commission/January 2005
Slaughter methods

<table>
<thead>
<tr>
<th>Slaughter methods</th>
<th>Specific method</th>
<th>AW concerns / implications</th>
<th>Key requirements</th>
<th>Species</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding with prior stunning</td>
<td>Automated mechanical cutting</td>
<td>Ineffective stunning; failure to cut and misplaced cuts. Recovery of consciousness following reversible stunning systems</td>
<td>Design, maintenance and operation of equipment; accuracy of cut; manual back-up</td>
<td>Poultry only</td>
<td></td>
</tr>
<tr>
<td>Manual neck cut on one side</td>
<td></td>
<td>Ineffective stunning; recovery of consciousness following reversible stunning systems</td>
<td>Prior non-reversible stunning</td>
<td>Poultry only</td>
<td>N.B. slow induction of unconsciousness under slaughter without stunning</td>
</tr>
<tr>
<td>Oral cut</td>
<td></td>
<td>Ineffective stunning; recovery of consciousness following reversible stunning systems</td>
<td>Prior non-reversible stunning</td>
<td>Poultry only</td>
<td>N.B. slow induction of unconsciousness in non-stun systems</td>
</tr>
<tr>
<td>Other methods without stunning</td>
<td>Decapitation with a sharp knife</td>
<td>Pain due to loss of consciousness not being immediate</td>
<td></td>
<td>Sheep, goats, poultry</td>
<td>This method is only applicable to Jhatka</td>
</tr>
<tr>
<td></td>
<td>Manual neck dislocation and decapitation</td>
<td>Pain due to loss of consciousness not being immediate; difficult to achieve in large birds</td>
<td>Neck dislocation should be performed in one stretch to sever the spinal cord</td>
<td>Poultry only</td>
<td>Slaughter by neck dislocation should be performed in one stretch to sever the spinal cord</td>
</tr>
<tr>
<td>Cardiac arrest in a waterbath electric stunner</td>
<td>Bleeding by evisceration</td>
<td></td>
<td>Induction of cardiac arrest</td>
<td>Quail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bleeding by neck cutting</td>
<td></td>
<td></td>
<td>Poultry</td>
<td></td>
</tr>
</tbody>
</table>
Article 10

Methods, procedures or practices unacceptable on animal welfare grounds

- The restraining methods through immobilisation by injury like ‘puntilla’, breaking legs and ‘leg tendon cutting’, cause severe pain and stress in animals. Those methods are not acceptable in any species.

- The use of electrical stunning method with single application leg to leg is ineffective and unacceptable in any species. The electrocution in this way is likely to be painful. The animal welfare concerns are:
 - accidental pre-stun electric shocks;
 - inadequate current and voltage;
 - wrong electrode positioning;
 - recovery of consciousness.

- The slaughter method of brain stem severance by piercing through the eye socket or skull bone is not acceptable in any species except fish.
GUIDELINES FOR THE LAND TRANSPORT OF ANIMALS

Article 1

Responsibilities

The welfare of animals during their transport is the joint responsibility of all people involved.

The roles of each of those responsible are defined below:

- Owners and managers of animals are responsible for the general health of the animals and their fitness for the journey, and their welfare during the journey, regardless of whether duties are subcontracted to other parties during transport. They are also responsible for ensuring compliance with any required veterinary or other certification, and for the presence during the journey of at least one animal handler competent for the species being transported, with the authority to take prompt action. They are also responsible for ensuring that equipment and veterinary assistance are provided as appropriate for the species and journey.

- Business agents or buying/selling agents have a joint responsibility with owners for the selection of animals that are fit to travel. They have a joint responsibility with market owners and managers of facilities at the start and at the end of the journey for the availability of suitable facilities for the assembly, loading, transport, unloading and holding of animals, and for emergencies.

- Animal handlers are responsible for the humane handling and care of the animals, especially during loading and unloading, and for maintaining a journey log. In the absence of a separate animal handler, the driver is the animal handler.

- Transport companies, vehicle owners and drivers are responsible for planning the journey to ensure the care of the animals:
 - transport companies and vehicle owners are responsible for choosing appropriate vehicles and ensuring that properly trained staff are available for loading and caring for animals,
 - transport companies and vehicle owners are responsible for developing and keeping up to date contingency plans to address emergencies and minimise stress during transport,
 - transport companies and vehicle owners are responsible for producing a journey plan which includes a loading plan, journey duration and location of resting places,
 - drivers are responsible for loading only those animals which are fit to travel, for their correct loading into the vehicle and their inspection during the journey, and for appropriate responses to problems arising.

- Managers of facilities at the start and at the end of the journey, and at resting points are responsible for:
 - providing suitable premises for loading, unloading and securely holding the animals, with water and feed when required, until further transport, sale or other use (including rearing or slaughter),
 - providing competent animal handlers to load, unload, drive and hold animals in a manner that causes minimum stress and injury,
 - minimising the opportunities for disease transmission,
 - providing appropriate facilities, with water and feed when required,
Appendix XXII (contd)

- providing appropriate facilities for emergencies,
- providing facilities for washing and disinfecting vehicles after unloading,
- providing facilities and competent staff to allow the humane killing of animals when required,
- ensuring proper rest times and minimal delay during stops. See Article XXX

The responsibilities of Competent Authorities include:

- establishing minimum standards for animal welfare, including requirements for inspection of animals before, during and after their travel, and appropriate certification and record keeping,
- approving facilities, containers and vehicles for the transport of animals,
- setting standards for the competence of drivers, animal handlers and managers,
- ensuring appropriate awareness and training of drivers, animal handlers and managers,
- implementation of the standards, including through accreditation of / interaction with other organisations,
- monitoring and evaluating the effectiveness of standards of health and other aspects of welfare,
- monitoring and evaluating the use of veterinary medications.

All individuals, including veterinarians, involved in transporting animals and the associated handling procedures should receive appropriate training and be competent to meet their responsibilities.

Article 2

Competence

- All people handling animals, or who are otherwise responsible for animals during journeys, should be competent according to their responsibilities listed in Article 1. Competence may be gained through formal training or practical experience. Competence in areas other than animal welfare would need to be addressed separately.

- The competence of animal handlers should be demonstrated through a current certificate from an independent body, accredited by the Competent Authority. The certificate should be in one of the OIE official languages if the international transport of animals is involved.

- The assessment of the competence of animal handlers should at a minimum address knowledge, and ability to apply that knowledge, in the following areas:
 - planning a journey, including appropriate space allowance, and feed, water and ventilation requirements,
 - responsibilities for animals during the journey, including loading and unloading,
Appendix XXII (contd)

- sources of advice and assistance,
- animal behaviour, general signs of disease, and indicators of poor animal welfare such as stress, pain and fatigue, and their alleviation,
- relevant authorities and applicable transport regulations, and associated documentation requirements,
- general disease prevention procedures, including cleaning,
- appropriate methods of driving,
- methods of inspecting animals, managing situations frequently encountered during transport such as adverse weather conditions, and dealing with emergencies,
- species-specific aspects of animal handling and care, including feeding, watering and inspection,
- maintaining a journey log and other records.

Article 3

Planning the journey

General

- Adequate planning is a key factor affecting the welfare of animals during a journey.
- Before the journey starts, plans should be made in relation to:
 - preparation of animals for the journey,
 - choice of road or rail,
 - nature and duration of the journey,
 - vehicle/container design and maintenance, including roll-on roll-off vessels,
 - required documentation,
 - space allowance,
 - rest, water and feed,
 - observation of animals en route,
 - control of disease, and
 - emergency response procedures.
- Regulations concerning drivers (for example maximum driving periods) should be harmonised with maximum transport journey intervals appropriate for the species.

Preparation of animals for the journey

- When animals are to be provided with a novel diet or method of water provision during transport, an adequate period of adaptation should be planned.
- Animals should be exposed to appropriate contact with humans and handling conditions (including methods of restraint) prior to transport to reduce their fearfulness and improve their approachability (see Article 5).
Behaviour-modifying compounds (such as tranquillisers) should not be used routinely during transport. Such compounds should only be administered when a problem exists in an individual animal, and should be administered by a veterinarian or other person who has been instructed in their use by a veterinarian.

Nature and duration of the journey

The maximum duration of a journey should be determined according to:

- the ability of the animals to cope with the stress of transport (such as very young, old, lactating or pregnant animals),
- the animals’ previous transport experience,
- the onset of fatigue,
- the need for special attention,
- the need for feed and water,
- the increased susceptibility to injury and disease,
- space allowance, vehicle design, road conditions, driving quality,
- weather conditions.

Vehicle and container design and maintenance

- Vehicles and containers used for the transport of animals should be designed, constructed and fitted as appropriate to the species, size and weight of the animals to be transported; special attention should be paid to the avoidance of injury to animals through the use of secure smooth fittings free from sharp protrusions. The avoidance of injury to drivers and animal handlers while carrying out their responsibilities should be emphasised.

- Vehicles and containers should be designed with the structures necessary to provide protection from adverse weather conditions and to minimise the opportunity for animals to escape.

- In order to minimise the likelihood of the spread of pathogenic agents during transport, vehicles and containers should be designed to permit thorough cleaning and disinfection, and the containment of faeces and urine during a journey.

- Vehicles and containers should be maintained in good mechanical and structural condition.

- Vehicles and containers should have adequate ventilation to meet variations in climate and the thermo-regulatory needs of the animal species being transported; the ventilation system should be capable of operating when the vehicles is stationary and the air flow should be adjustable.

- Vehicles should be designed so that the faeces or urine from animals on upper levels do not soil animals on lower levels, nor their feed and water.

- When vehicles are carried on board ferries, facilities for adequately securing them should be available.
Appendix XXII (contd)

- If feeding or watering while the vehicle is moving is required, adequate facilities on the vehicle should be available.

- Suitable bedding should be added to vehicle floors to assist absorption of urine and faeces, to minimise slipping by animals, and protect animals (especially young animals) from hard flooring surfaces and adverse weather conditions.

Special provisions for transport in vehicles (road and rail) on roll-on/roll-off vessels or for containers

- Vehicles and containers should be equipped with a sufficient number of adequately designed, positioned and maintained securing points enabling them to be securely fastened to the vessel.

- Vehicles and containers should be secured to the ship before the start of the sea journey to prevent them being displaced by the motion of the vessel.

- Roll-on/roll-off vessels should have adequate ventilation to meet variations in climate and the thermo-regulatory needs of the animal species being transported, especially where the animals are transported in a secondary vehicle/container on enclosed decks.

Space allowance

- The number of animals which should be transported on a vehicle or in a container and their allocation to different compartments should be determined before the vehicle or container is loaded.

- The space required on a vehicle or in a container depends upon whether or not the animals need to lie down (for example pigs, camels and poultry), or to stand (horses). Animals which will need to lie down often stand when first loaded or when the vehicle is driven with too much lateral movement or sudden braking.

- When animals lie down, they should all be able to adopt a comfortable, normal lying posture which allows necessary thermoregulation.

- When animals are standing, they should have sufficient space to adopt a balanced position without body contact with other animals.

- The amount of headroom necessary depends on the species of animal. Each animal should be able to assume its natural position for transport (including during loading and unloading) without coming into contact with the roof or upper deck of the vehicle.

- Calculations according to the space allowance permitted for each animal should be carried out, using the figures given in these guidelines (see Appendix XXX) or, in their absence, in a relevant national or international document. The size of already established groups will affect the number and size of the pens, and the distribution of animals in pens on the vehicle.

- Other factors which may influence space allowance include:
 - vehicle/container design
 - length of journey
 - need to provide feed and water on the vehicle
 - quality of roads
 - expected weather conditions.
Rest, water and feed

- There should be planning for the availability of suitable water and feed during the journey. Feed should be of appropriate quality and composition for the species, age, condition of the animals, climatic conditions, etc.

- Animals should be rested at resting points at appropriate intervals during the journey. The type of transport and species being transported should determine the frequency of rest stops and whether the animals are unloaded. There should be planning for water and feed availability during rest stops.

Ability to observe animals en route in relation to journey duration

- Animals should be positioned to enable each animal to be observed regularly during the journey to ensure their safety and good welfare.

- If the animals are in crates or on multi-tiered vehicles which do not allow free access for observation, for example where the roof of the tier is too low (i.e. less than 1.3 m), animals cannot be inspected adequately, and serious injury or disease could go undetected. In these circumstances, a shorter journey duration should be allowed, and the maximum duration will vary according to the rate at which problems arise in the species and under the conditions of transport.

Control of disease

- As animal transport is often a significant factor in the spread of infectious diseases, journey planning should take the following into account:
 - mixing of animals from different sources in a single consignment should be minimised,
 - contact at resting points between animals from different sources should be avoided,
 - when possible, animals should be vaccinated against diseases to which they are likely to be exposed at their destination,
 - medications used prophylactically or therapeutically should only be administered by a veterinarian or other person who has been instructed in their use by a veterinarian.

Emergency response procedures

- Appropriate contingency plans to address emergencies should be prepared in advance (see Article 7).

Other considerations

- Extreme weather conditions are hazardous for animals undergoing transport and require appropriate vehicle design to minimise risks. Special precautions should be taken for animals that have not been acclimatised or which are unsuited to either hot or cold conditions. In some extreme conditions of heat or cold, animals should not be transported at all.

- In some circumstances, transportation during the night may reduce thermal stress or the adverse effects of other external stimuli.
Appendix XXII (contd)

Article 4

Documentation

- Animals should not be loaded until the required documentation is complete.
- The documentation accompanying the consignment should include:
 - journey travel plan,
 - date, time, and place of loading and unloading,
 - veterinary certification, when required,
 - driver’s competencies,
 - identities of the animals transported to allow traceback of individual animals to the premises of departure, and where possible to the premises of origin,
 - details of any animals considered ‘at risk’ (Article 5),
 - documentation of the period of rest, and access to feed and water, prior to the journey,
 - stocking density estimate for each load in the consignment,
 - the journey log - daily record of inspection and important events, including records of morbidity and mortality, climatic conditions, rest stops, travel time and distance, feed and water offered and estimates of consumption, medication provided, and mechanical defects.

- When veterinary certification is required to accompany consignments of animals, it should include:
 - appropriate animal identification (description, number, etc.),
 - health status including test, treatment and vaccination status
 - when required, details of disinfection carried out.

At the time of certification, the veterinarian should notify the animal handler of any factors affecting the animals’ fitness to travel for a particular journey.

Article 5

Pre-journey period

General

- Pre-journey rest is necessary if the welfare of animals has become poor during the collection period because of the physical environment or the social behaviour of the animals.
- Feed and water should be provided pre-journey if the journey duration is greater than the normal inter-feeding and drinking interval for the animal. Recommendations for specific species are described in detail in Article XXX.
• When animals will be provided with a novel diet or method of water provision during or after transport, an adequate period of pre-exposure is necessary.

• Before each journey, vehicles and containers should be thoroughly cleaned and, if necessary, treated for animal health and public health purposes, using methods approved by the Competent Authority. When cleaning is necessary during a journey, this should be carried out with the minimum of stress to the animals.

• Where an animal handler believes that there is a significant risk of disease among the animals to be loaded or significant doubt as to their fitness to travel, the animals should be inspected by a veterinarian.

Selection of compatible groups

• Compatible groups should be selected before transport to avoid adverse animal welfare consequences. The following guidelines should be applied when assembling groups of animals:

 o animals reared together should be maintained as a group; animals with a strong social bond should be transported together,

 o animals of the same species should not be mixed if there is a significant likelihood of aggression; aggressive individuals should be segregated (recommendations for specific species are described in detail in Article XXX). For some species, animals from different groups should not be mixed because poor welfare occurs unless they have established a social structure,

 o young or small animals should be separated from older or larger animals, with the exception that dam and offspring should be transported together,

 o animals with horns or antlers should not be mixed with animals lacking horns or antlers,

 o animals of different species should not be mixed unless they are judged to be compatible.

Shelter in the assembly/holding area

• Assembly/holding areas should be designed to:

 o securely hold the animals,

 o maintain a safe environment from hazards, including predators and disease,

 o protect animals from exposure to severe weather conditions,

 o allow for maintenance of social groups, and

 o allow for rest, and appropriate water and feed.

Effect of travel experience, long and short term

• Consideration should be given to an animal’s previous transport experience, training and conditioning as these may reduce fear and stress in animals. Animals that are carefully and regularly transported may show less adverse responses to transport.
Appendix XXII (contd)

- Exposure to familiar personnel should reduce the fearfulness of animals and improve their approachability during transport procedures.

Fitness to travel

- Each animal should be inspected by a veterinarian or an *animal handler* to assess fitness to travel. Animals found unfit to travel should not be loaded onto a *vehicle*, except for transport to receive veterinary treatment.
- Humane and effective arrangements should be made by the owner or agent for the handling and care of any animal rejected as unfit to travel.
- Animals that are unfit to travel include:
 - those that are sick, injured, weak, disabled or fatigued,
 - those that are unable to stand unaided and bear weight on each leg,
 - those that are blind in both eyes,
 - those that cannot be moved without causing them additional suffering,
 - pregnant animals which are likely to give birth during the *journey*,
 - those whose body condition would result in poor welfare because of the expected climatic conditions.
- Risks during *transport* can be reduced by selecting animals best suited to the conditions of travel and those that are acclimatised to expected weather conditions.
- Animals ‘at risk’ which require special conditions (such as in the design of facilities and vehicles, and the length of the journey) and additional attention during *transport*, may include:
 - large or obese individuals,
 - very young or old animals,
 - excitable or aggressive animals,
 - animals which have had little contact with humans,
 - animal subject to motion sickness,
 - females in late pregnancy or heavy lactation; dam and offspring,
 - those with a history of exposure to stressors or pathogenic agents prior to *transport*.

Specific species requirements

Transport procedures should be able to take account of variations in the behaviour of the species. Flight zones, social interactions and other behaviour vary significantly among species and even within species. Facilities and handling procedures that are successful with one species are often ineffective or dangerous with another.

- Recommendations for specific species are described in detail in Article XXX.
Article 6

Loading

Experienced supervision

- Since loading has been shown to be the procedure most likely to be the cause of poor welfare in transported animals, the methods to be used should be carefully planned.

- Loading should be supervised by animal handlers. These animal handlers should ensure that animals are loaded quietly and without unnecessary noise, harassment or force, and that untrained assistants or spectators do not impede the process.

- When containers are loaded onto a vehicle, this should be carried out in such a way to avoid poor animal welfare.

Facilities

- The facilities for loading including the collecting area, races and loading ramps should be designed and constructed to take into account the needs and abilities of the animals with regard to dimensions, slopes, surfaces, absence of sharp projections, flooring, etc.

- Loading facilities should be properly illuminated to allow the animals to be observed by the animal handler(s), and to allow the animals’ ease of movement at all times. Facilities should provide uniform lighting directly over approaches to sorting pens, chutes, loading ramps, with brighter lighting inside vehicles/containers, in order to minimise baulking. Dim lighting may be advantageous for the catching of poultry and some other animals.

- Ventilation during loading and the journey should provide for fresh air, the removal of excessive heat, humidity and noxious fumes (such as ammonia and carbon monoxide), and the prevention of accumulations of ammonia and carbon dioxide. Under warm and hot conditions, ventilation should allow for the adequate convective cooling of each animal. In some instances, adequate ventilation can be achieved by increasing the space allowance for animals.

Goads and other aids

- The following principles should apply:

 o Animals which have little or no room to move should not be subjected to physical force or goads and other aids which compel movement.

 o Useful and permitted aids include panels, flags, plastic paddles, flappers (a length of cane with a short strap of leather or canvas attached), plastic bags and metallic rattles; they should be used in a manner sufficient to encourage and direct movement of the animals but without physical contact with them.

 o Painful procedures (including whipping, tail twisting, use of nose twitches, pressure on eyes, ears or external genitalia), or the use of unsuitable goads or other aids (including sticks with sharp ends, lengths of metal piping, fencing wire or heavy leather belts), should not be used to move animals.
Appendix XXII (contd)

o The use of goads which administer electric shocks should be discouraged, and restricted to that
necessary to assist movement of the animal. Such use should be limited to battery-powered
goads on the hindquarters of adult pigs and cattle, and never on sensitive areas such as the eyes,
mouth, ears, anogenital region or belly. Such instruments should not be used on other animals.

o The use of muzzled, well trained dogs to help with the loading of some species may be
acceptable.

o The throwing or dropping of animals, or their lifting or dragging by their tail, head, horns, ears,
limbs, wool, hair or feathers should not be permitted. The manual lifting of small animals is
permissible.

Article 7

Travel

• Drivers and animal handlers should check the load immediately before departure to ensure that the
animals have been properly loaded. Each load should be checked again early in the trip and
adjustments made as appropriate. Periodic checks should be made throughout the trip.

• Drivers should utilise smooth, defensive driving techniques, without sudden turns or stops, to
minimise uncontrolled movements of the animals.

Methods of restraining or containing animals

• Methods of restraining animals should be appropriate to the species involved and the training of
the individual animal.

• Recommendations for specific species are described in detail in Article XXX.

Regulating the environment within vehicles or containers

• Animals should be protected against harm from hot or cold conditions during travel. Effective
ventilation procedures for maintaining the animals’ environment within vehicles or containers will vary
according to whether conditions are cold, hot and dry or hot and humid, but in all conditions a
build-up of noxious gases should be prevented. Specific temperature and humidity parameters are
described in detail in Appendix XXX.

• The animals’ environment in hot weather can be regulated by the flow of air produced by the
movement of the vehicle. In warm and hot weather, the duration of journey stops should be
minimised and vehicles should be parked under shade, with maximal ventilation.

• To minimise slipping and soiling, and maintain a healthy environment, urine and faeces should be
removed from floors when necessary and disposed of in such a way as to prevent the transmission
of disease and in compliance with all relevant health and environmental legislation.

Sick, injured and dead animals

• A driver or animal handler finding sick, injured or dead animals should act according to a
predetermined emergency response plan (see Appendix XXX).

• If possible, sick or injured animals should be segregated.

• Ferries (roll-on roll-off) should have procedures to treat sick or injured animals during the journey.
• In order to reduce the likelihood that animal transport will increase the spread of infectious disease, contact between transported animals, or the products of the transported animals, and other farm animals should be minimised.

• During the journey, when disposal of a dead animal becomes necessary, this should be carried out in such a way as to prevent the transmission of disease and in compliance with all relevant health and environmental legislation.

• When euthanasia is necessary, the driver or animal handler should ensure that it is carried out humanely, and results in immediate death. When necessary, assistance should be sought from a veterinarian or other person(s) competent in euthanasia procedures. Recommendations for specific species are described in the Chapter on humane killing of animals for disease control purposes.

Water and feed requirements

• If journey duration is such that feeding or watering is required or if the species requires feed or water throughout, access to suitable feed and water for all the animals carried in the vehicle should be provided. There should be adequate space for all animals to move to the feed and water sources and due account taken of likely competition for feed.

• Recommendations for specific species are described in detail in Article XXX.

Rest periods and conditions including hygiene

• Animals that are being transported should be rested at appropriate intervals during the journey and offered feed and water, either on the vehicle or, if necessary, unloaded into suitable facilities.

• Suitable facilities should be used en route, when resting requires the unloading of the animals. These facilities should meet the needs of the particular animal species and should allow access of all animals to feed and water.

In-transit observations

• Animals being transported by road should be observed soon after a journey is commenced and whenever the driver has a rest stop (with a maximum interval of 5 hours). After meal breaks and refuelling stops, the animals should be observed immediately prior to departure.

• Animals being transported by rail should be observed at each scheduled stop nearest to 5 hours since the last observation. The responsible rail transporter should monitor the progress of trains carrying animals and take all appropriate action to minimise delays.

• During stops, it should be ensured that the animals continue to be properly confined, have appropriate feed and water, and their physical condition is satisfactory.

Article 8

Unloading and post-journey handling

General

• The required facilities and the principles of animal handling detailed in Article 6 (Loading) apply equally to unloading, but consideration should be given to the likelihood that the animals will be fatigued.
Appendix XXII (contd)

- Unloading should be supervised by an animal handler with knowledge and experience of the behavioural and physical characteristics of the species being unloaded. Animals should be unloaded from the vehicle into appropriate facilities as soon as possible after arrival at the destination but sufficient time should be allowed for unloading to proceed quietly and without unnecessary noise, harassment or force.

- Facilities should provide all animals with appropriate care and comfort, adequate space and ventilation, access to feed (if appropriate) and water, and shelter from extreme weather conditions.

- For details regarding the unloading of animals at a slaughterhouse, see Chapter on Slaughter of animals for human consumption.

Sick and injured animals

- An animal that has become sick, injured or disabled during a journey should be appropriately treated or humanely killed (see Appendix XXX). When necessary, veterinary advice should be sought in the care and treatment of these animals.

- At the destination, the animal handler during transit should ensure that responsibility for the welfare of sick, injured or disabled animals is transferred to a suitable person.

- There should be appropriate facilities and equipment for the humane unloading of animals that are non-ambulatory due to fatigue, injury or sickness. These animals should be unloaded in a manner that causes the least amount of suffering. After unloading, separate pens and other appropriate facilities should be available for sick or injured animals.

- Feed, if appropriate, and water should be available for each sick or injured animal.

Addressing disease risks

- The following should be taken into account in addressing the greater risk of disease due to animal transport and the possible need for segregation of transported animals at the destination:
 - increased contact among animals, including those from different sources and with different disease histories,
 - increased shedding of pathogens and increased susceptibility to infection related to stress and impaired defences against disease, including immunosuppression,
 - exposure of animals to pathogens which may contaminate vehicles, resting points, markets etc.

Cleaning and disinfection

- Vehicles, crates, containers, etc. used to carry the animals should be cleaned before re-use through the physical removal of manure and bedding by scraping, washing and flushing vehicles and containers with water and detergent. This should be followed by disinfection when there are concerns about disease transmission.

- Manure, litter and bedding should be disposed of in such a way as to prevent the transmission of disease and in compliance with all relevant health and environmental legislation.

- When disposal of a dead animal becomes necessary, this should be carried out in such a way as to prevent the transmission of disease and in compliance with all relevant health and environmental legislation.
• Establishments like livestock markets, slaughterhouses, resting sites, railway stations, etc. where animals are unloaded should be provided with appropriate areas for the cleaning and disinfection of vehicles.

• Where disinfection is necessary, it should be carried out with the minimum stress to the animals.

Article 9

Actions in the event of a refusal to allow the completion of the journey

• The welfare of the animals should be the first consideration in the event of a refusal to allow the completion of the journey.

• When the animals have been refused import, the Competent Authority of that country should make available suitable isolation facilities to allow the unloading of animals from a vehicle and their secure holding, without posing a risk to the health of national herd or flock, pending resolution of the situation. In this situation, the priorities should be:
 o the Competent Authority of the importing country should provide urgently in writing the reasons for the refusal,
 o in the event of a refusal for animal health reasons, the Competent Authority of the importing country should provide urgent access to a veterinarian, where possible an OIE veterinarian(s) appointed by the Director General, to assess the animals’ health status with regard to the importing country’s concerns, and the necessary facilities and approvals to expedite the required diagnostic testing,
 o the Competent Authority of the importing country should provide access to allow continued assessment of the health and other aspects of the welfare of the animals,
 o if the matter cannot be promptly resolved, the Competent Authorities of the exporting and importing countries should call on the OIE to mediate.

• In the event that a Competent Authority requires the animals to remain on the vehicle, the priorities should be:
 o the Competent Authority should allow reprovisioning of the vehicle with water and feed as necessary,
 o the Competent Authority should provide urgently in writing the reasons for the refusal,
 o in the event of a refusal for animal health reasons, the Competent Authority should provide urgent access to an independent veterinarian(s) to assess the animals’ health status, and the necessary facilities and approvals to expedite the required diagnostic testing,
 o the Competent Authority should provide access to allow continued assessment of the health and other aspects of the welfare of the animals.

• The OIE should utilise its dispute settlement mechanism to identify a mutually agreed solution which will address animal health and any other welfare issues in a timely manner.
Appendix XXII (contd)

Article XXX
Species specific issues
(To be developed)
GUIDELINES FOR THE TRANSPORT OF ANIMALS BY SEA

Article 1

Responsibilities

Once the decision to transport animals by sea has been made, the welfare of animals during their transport is paramount and is the joint responsibility of all people involved. These guidelines may also be applied to the transport of animals by water within a country.

The management of animals at post-discharge facilities is outside the scope of this document.

The roles of each of those responsible are defined below:

- **Exporters**, owners of animals and managers of facilities are jointly responsible for the general health of the animals and their fitness for the journey.

- The **exporter** has overall responsibility for the organisation, carrying out and completion of the journey, regardless of whether duties are subcontracted to other parties during transport. The exporter is also responsible for ensuring that equipment and medication are provided as appropriate for the species and journey, and for the presence during the journey of at least one animal handler competent for the species being transported. The exporter is also responsible for ensuring compliance of the animals with any required veterinary certification and, in the case of animals for export, any other requirements of the importing and exporting countries.

- **Business or buying/selling agents** have a joint responsibility with owners for the selection of animals that are fit to travel. They have a joint responsibility with masters of vessels and managers of facilities at the start and at the end of the journey for the availability of suitable facilities for the assembly, loading, transport, unloading and holding of animals, and for emergencies.

- **Animal handlers** are responsible for the humane handling and care of animals, especially during loading and unloading. To carry out these responsibilities, they should have the authority to take prompt action.

- The **exporter**, the shipping company and the master of the vessel are jointly responsible for planning the journey to ensure the care of the animals, including:
 - choosing appropriate vessels and ensuring that competent animal handlers are available for loading and caring for animals throughout the journey,
 - developing and keeping up to date contingency plans to address emergencies (including adverse weather conditions) and minimise stress during transport,
 - correct loading of the ship, regular inspections during the journey and for appropriate responses to problems arising
 - disposal of carcases according to international law.

- To carry out these responsibilities, the people involved should be competent regarding transport regulations, equipment usage, humane handling and the care of animals.
Appendix XXII (contd)

- Managers of facilities during loading of the animals are responsible for:
 - providing suitable premises for loading the animals,
 - providing competent animal handlers to load the animals in a manner that causes minimum stress and injury,
 - providing appropriate facilities for emergencies,
 - providing facilities and veterinarians or competent animal handlers capable of killing animals humanely when required.

- Managers of facilities at the end of the journey are responsible for:
 - providing suitable facilities for unloading the animals onto transport vehicles for immediate movement or securely holding the animals in lairage, with shelter, water and feed, when required, for transit,
 - providing competent animal handlers to unload the animals with minimum stress and injury,
 - minimising the opportunities for disease transmission while the animals are in the facilities,
 - providing appropriate facilities for emergencies,
 - providing facilities and veterinarians or competent animal handlers capable of killing animals humanely when required.

- The responsibilities of the Competent Authority of the exporting country include:
 - establishing minimum standards for animal welfare, including requirements for inspection of animals before and during their travel, and for certification and record keeping,
 - approving facilities, containers, vehicles/vessels for the holding and transport of animals,
 - setting competence standards for animal handlers and managers,
 - ensuring that the vessel transporting animals meets the required standards, including those of the importing country,
 - implementation of the standards, including through accreditation of / interaction with other organisations and competent authorities,
 - monitoring and evaluating health and welfare performance, including the use of any veterinary medications.

- The responsibilities of the Competent Authority of the importing country include:
 - establishing minimum standards for animal welfare, including requirements for inspection of animals after their travel, and for certification and record keeping,
 - approving facilities, containers and vehicles for the unloading, holding and transport of animals,
 - setting competence standards for animal handlers and managers,
Appendix XXII (contd)

- Implementation of the standards, including through accreditation of / interaction with other organisations and competent authorities,
- Ensuring that the exporting country is aware of the required standards for the vessel transporting the animals,
- Monitoring and evaluating health and welfare performance, including the use of any veterinary medications.

- Veterinarians are responsible for the humane handling and treatment of animals during the journey. To carry out these responsibilities, they should have the authority to act and report independently.
 - The veterinarian should meet with the Master, Chief Officer and the senior animal handler on a daily basis.

Article 2

Competence

- All people handling animals or who are otherwise responsible for animals during journeys, should be competent according to their responsibilities listed in Article 1. Competence in areas other than animal welfare would need to be addressed separately. Competence may be gained through formal training and/or practical experience.

- This competence should be demonstrated through a current certificate in one of the OIE official languages from an independent body accredited by a Competent Authority.

- Assessment of competence for animal handlers should at a minimum address knowledge, and ability to apply that knowledge, in the following areas:
 - Responsibilities for animals during the journey,
 - Sources of advice and assistance,
 - Animal behaviour, general signs of disease, and indicators of poor animal welfare such as stress, pain and fatigue, and their alleviation,
 - Relevant authorities and applicable transport regulations, and associated documentation requirements,
 - General disease prevention procedures, including cleaning,
 - Appropriate methods of animal handling during transport and associated activities such as assembling, loading, and unloading,
 - Methods of inspecting animals, managing situations frequently encountered during transport such as adverse weather conditions, and dealing with emergencies,
 - Species-specific aspects of animal handling and care, including feeding, watering and inspection,
 - Appropriate record keeping and journey log.

- Assessment of competence for exporters should at a minimum address knowledge, and ability to apply that knowledge, in the following areas:
 - Planning a journey, including appropriate space allowances, and feed, water and ventilation requirements,
 - Relevant authorities and applicable transport regulations, and associated documentation requirements,
Appendix XXII (contd)

- appropriate methods of animal handling during transport and associated activities such as cleaning and disinfection, assembling, loading, and unloading,
- species-specific aspects of animal handling and care, including appropriate equipment and medication,
- sources of advice and assistance,
- appropriate record keeping and journey log.
- managing situations frequently encountered during transport such as adverse weather conditions, and dealing with emergencies

Article 3

Documentation

- Animals should not be loaded until the documentation required to that point is complete.
- The documentation accompanying the consignment should include:
 - journey travel plan,
 - time, date and place of loading,
 - the journey log – a daily record of inspection and important events which includes records of morbidity and mortality, climatic conditions, food and water consumed, medication provided, mechanical defects,
 - time, date and place of arrival and unloading,
 - veterinary certification, when required,
 - animal identification to allow traceback of individual animals to the premises of departure, and where possible to the premises of origin,
 - details of animals at risk,
 - number of animal handlers on board, and their competencies,
 - stocking density estimate for each load in the consignment.
- Veterinary certification should accompany consignments of animals and address:
 - cleaning and disinfection of the vessel,
 - fitness of the animals to travel,
 - animal identification (description, number, etc.),
 - health status including tests, treatment and vaccinations carried out, if required.

Article 4

Planning the journey

General

- Adequate planning is a key factor affecting the welfare of animals during a journey.
• Before the journey starts, plans should be made in relation to:
 o type of transport vessel required,
 o route, taking into account distance, expected weather and sea conditions,
 o nature and duration of journey,
 o daily care and management of the animals,
 o avoiding the mixing of animals from different sources in a single pen group.
 o provision of appropriate equipment and medication for the numbers and species carried
 o emergency response procedures

• Preconditioning may be required, e.g. for dry food, and unfamiliar methods of supply of feed and water.

• Potential for spread of infectious disease
 o when requested by the Veterinary Authority of the importing country, animals should be vaccinated against diseases to which they are likely to be exposed at their destination.

• There should be planning for water and feed availability during the journey. Feed should be of appropriate quality and composition for the species, age, condition of the animals, etc.

• Extreme weather conditions are hazards for animals undergoing transport and require appropriate vessel design to minimise risks. Special precautions should be taken for animals that have not been acclimatised or which are unsuited to either hot or cold conditions. In some extreme conditions of heat or cold, animals should not be transported at all.

• Behaviour-modifying or other medication should not be used routinely during transport. Such medicines should only be administered when a problem exists in an individual animal, and should be administered by a veterinarian or other person who has been instructed in their use by a veterinarian. Treated animals should be placed in a dedicated area.

• There should be an emergency management plan that identifies the important adverse events that may be encountered during the journey, the procedures for managing each event and the action to be taken in an emergency. For each important event, the plan should document the actions to be undertaken and the responsibilities of all parties involved, including communications and record keeping.

Vessel and container design and maintenance

• Vessels used for the sea transport of animals should be designed, constructed and fitted as appropriate to the species, size and weight of the animals to be transported; special attention should be paid to the avoidance of injury to animals through the use of secure smooth fittings free from sharp protrusions and the provision of non-slip flooring. The avoidance of injury to animal handlers while carrying out their responsibilities should be emphasised.

• Vessels should be designed to permit thorough cleaning and disinfection, and the management of faeces and urine.
Appendix XXII (contd)

- *Vessels* should be maintained in good mechanical and structural condition.

- *Vessels* should have adequate ventilation to meet variations in climate and the thermo-regulatory needs of the animal species being transported; the ventilation system should be capable of operating when the *vessel* is stationary and the air flow should be adjustable.

- The feeding and watering system should be designed to permit adequate access to feed and water appropriate to the species, size and weight of the animals, and to minimise soiling of pens.

- *Vessels* should be designed so that the faeces or urine from animals on upper levels do not soil animals on lower levels, or their feed or water.

- Stowage of feed and bedding should be carried out in such a way to ensure protection from the elements and sea water.

- Where appropriate, suitable bedding, such as straw or sawdust, should be added to vessel floors to assist absorption of urine and faeces, provide better footing for animals and protect animals (especially young animals) from hard or rough flooring surfaces and adverse weather conditions.

- The above principles apply also to *containers* used for the transport of animals.

Special provisions for transport in road vehicles on roll-on/roll-off vessels or for containers

- Road vehicles and *containers* should be equipped with a sufficient number of adequately designed, positioned and maintained securing points enabling them to be securely fastened to the *vessel*.

- Road vehicles and *containers* should be secured to the ship before the start of the sea journey to prevent them being displaced by the motion of the *vessel*.

- *Vessels* should have adequate ventilation to meet variations in climate and the thermo-regulatory needs of the animal species being transported, especially where the animals are transported in a secondary *vehicle/container* on enclosed decks.

Space allowance

- The number of animals which should be transported on a *vessel* and their allocation to different pens on the *vessel* should be determined before *loading*.

- The amount of space required, including headroom, depends on the species of animal and should allow the necessary thermoregulation. Each animal should be able to assume its natural position for transport (including during *loading* and *unloading*) without coming into contact with the roof or upper deck of the *vessel*. When animals lie down, there should be enough space for every animal to adopt a comfortable, normal lying posture.

- Calculations for the space allowance for each animal should be carried out, using the figures given in these guidelines or, in their absence, in a relevant national or international document. The size of pens will affect the number of animals in each.

- The same principles apply when animals are transported in *containers*.

Ability to observe animals en route

- Animals should be positioned to enable them to be observed regularly during the *journey* to ensure their safety and good welfare.
• To allow an adequate inspection of animals en route, it should be possible for each animal to be clearly observed by the animal handler or other responsible person.

Emergency response procedures

• Appropriate contingency plans to address emergencies should be prepared in advance.

Article 5

Pre-journey period

General

• Before each journey, vessels should be thoroughly cleaned and treated for animal and public health purposes, using chemicals approved by the Competent Authority. When cleaning is necessary during a journey, this should be carried out with the minimum of stress to the animals.

• In some circumstances, animals may require pre-journey assembly. In these circumstances, the following points should be considered:
 o For animals such as pigs which are susceptible to motion sickness, and in order to reduce urine and faeces production during the journey, a short period of feed deprivation prior to loading is desirable.
 o When animals will be provided with a novel diet or method of water provision during or after transport, an adequate period of pre-exposure is necessary. Preconditioning to the feed to be used on the vessel may be necessary in such cases.

• Pre-journey holding areas should be designed to:
 o securely contain the animals,
 o maintain an environment safe from hazards, including predators and disease,
 o protect animals from exposure to adverse weather conditions, and
 o allow for rest, watering and feeding.

Selection of compatible groups

• Compatible groups should be selected before transport to avoid adverse animal welfare consequences. The following guidelines should be applied when assembling groups of animals:
 o animals of different species should not be mixed unless they are judged to be compatible,
 o animals of the same species can be mixed unless there is a significant likelihood of aggression; aggressive individuals should be segregated,
 o young or small animals may need to be separated from older or larger animals, with the exception of nursing mothers with young at foot,
 o animals with horns or antlers should not be mixed with animals lacking horns or antlers,
Appendix XXII (contd)

- animals reared together should be maintained as a group; animals with a strong social bond, such as a dam and offspring, should be transported together.

Fitness to travel

- Animals should be inspected before travel and those found unfit to travel by farm staff, animal handlers or veterinarians should not be loaded onto a vessel.
- Humane and effective arrangements should be made by the owner or agent for the handling and care of any animal rejected as unfit to travel.
- Animals that are unfit to travel include:
 - those that are sick, injured, weak, disabled or fatigued,
 - those that are unable to stand unaided and bear weight on each leg,
 - those that are blind in both eyes,
 - those that cannot be moved without causing them additional suffering,
 - newborn with an unhealed navel,
 - females travelling without young which have given birth within the previous 48 hours,
 - pregnant animals which would be in the final 10% of their gestation period at the planned time of unloading.
- Risks during transport can be reduced by selecting animals best suited to the conditions of travel and those that are acclimatised to expected weather conditions.
- Animals at risk, and requiring better conditions and additional attention during transport include:
 - very large or obese individuals,
 - very young or old animals,
 - excitable or aggressive animals,
 - animals which have had little contact with humans,
 - females in the last third of pregnancy or in heavy lactation.
- Hair or wool length needs consideration in relation to the weather conditions expected.

Article 6

Loading

Experienced supervision

- Loading should be carefully planned as it has the potential to be the cause of poor welfare in transported animals.
- Loading should be supervised by the Competent Authority and managed by an animal handler(s). Animal handlers should ensure that animals are loaded quietly and without unnecessary noise, harassment or force, and that untrained assistants or spectators do not impede the process.
Ventilation during loading and the journey should provide for fresh air, and the removal of excessive heat, humidity and noxious fumes (such as ammonia and carbon monoxide). Under warm and hot conditions, ventilation should allow for the adequate convective cooling of each animal. In some instances, adequate ventilation can be achieved by increasing the space allowance for animals.

Facilities

- The facilities for loading including the collecting area at the wharf, races and loading ramps should be designed and constructed to take into account of the needs and abilities of the animals with regard to dimensions, slopes, surfaces, absence of sharp projections, flooring, sides etc.
- All loading facilities should be properly illuminated to allow the animals to be easily inspected by the animal handler(s), and to allow the animals’ ease of movement at all times.

Goads and other aids

- The following principles should apply:
 - Goads (aids for encouraging animals to move) should not be used on animals that have little or no room to move.
 - Useful and permitted goads include panels, flags, plastic paddles, flappers (a length of cane with a short strap of leather or canvas attached), plastic bags and metallic rattles; they should be used in a manner sufficient to encourage and direct movement of the animals but without physical contact with them.
 - Unsuitable goads such as large wooden sticks, sticks with sharp ends, lengths of metal piping, fencing wire or heavy leather belts should not be used to strike animals.
 - The use of goads which administer electric shocks should be discouraged, and restricted to that necessary to assist movement of the animal. If such use is necessary, it should be limited to the hindquarters of pigs and large ruminants, and never on sensitive areas such as the eyes, mouth, ears, anogenital region or belly. Such instruments should not be used on horses, sheep and goats of any age, or on calves or piglets.
 - The use of well trained dogs to help with the loading of some species may be acceptable.
 - Manual lifting is permissible for young animals that may have difficulty negotiating ramps, but the lifting of animals by their tail, head, horns, ears, limbs, wool or hair should not be permitted.

Article 7

Travel

Inspections

- Competent animal handler(s) should check the consignment immediately before departure to ensure that the animals have been loaded according to the load plan. Each consignment should be checked again within 24 hours.
- Adjustments should be made to the stocking density within 48 hours of departure and as appropriate during the journey.
Appendix XXII (contd)

- Each pen of animals should be observed on a daily basis for normal behaviour, health and welfare, and the correct operation of ventilation, watering and feeding systems. There should also be a night patrol. Any necessary corrective action should be undertaken promptly.
- Adequate access to suitable feed and water should be ensured for all animals in each pen.

Sick and injured animals

- Sick or injured animals should be segregated/isolated.
- Sick or injured animals should be treated promptly and appropriately, and veterinary advice should be sought if necessary. All drugs and products should be used in accordance with the manufacturer’s recommendations.
- A record of treatments carried out and their outcomes should be kept.
- When euthanasia is necessary, the person responsible for the animals must ensure that it is carried out humanely, and results in immediate death. When necessary, assistance should be sought from a veterinarian or other person(s) competent in euthanasia procedures. Recommendations for specific species are described in Chapter on humane killing of animals for disease control purposes.

Cleaning and disinfection

- *Vessels* and *containers*, used to carry the animals should be cleaned before re-use through the physical removal of manure and bedding by scraping, washing and flushing *vessels* and *containers* with water. This should be followed by *disinfection* when there are concerns about disease transmission.
- Manure, litter and bedding should be disposed of in such a way as to prevent the transmission of disease and in compliance with all relevant health and environmental legislation.
- Where cleaning or *disinfection* is necessary during travel, it should be carried out with the minimum stress to the animals.

Article 8

Unloading and post-journey handling

General

- The required facilities and the principles of animal handling detailed in Article 6 (Loading) apply equally to unloading, but consideration should be given to the likelihood that the animals will be fatigued.
- *Unloading* should be carefully planned as it has the potential to be the cause of poor welfare in transported animals.
- A livestock *vessel* should have priority attention when arriving in port and have priority access to a berth with suitable unloading facilities. As soon as possible after the ship’s arrival at the port and acceptance of the consignment by the *Competent Authority*, animals should be unloaded into appropriate facilities.
- The accompanying *veterinary certificate* and other documents should meet the requirements of the importing country. Veterinary inspections should be completed as quickly as possible.
• Unloading should be supervised by the Competent Authority and managed by a competent animal handler(s). The animal handlers should ensure that animals are unloaded quietly and without unnecessary noise, harassment or force, and that untrained assistants or spectators do not impede the process.

Facilities

• The facilities for unloading including the collecting area at the wharf, races and unloading ramps should be designed and constructed to take into account of the needs and abilities of the animals with regard to dimensions, slopes, surfaces, absence of sharp projections, flooring, sides etc.

• All unloading facilities should be properly illuminated to allow the animals to be easily inspected by the animal handler(s), and to allow the animals’ ease of movement at all times.

• In case of emergencies, port facilities should provide animals with appropriate care and comfort, adequate space, access to quality feed and clean drinking water, and shelter from extreme weather conditions.

Sick and injured animals

• In some cases, where animals are non-ambulatory due to fatigue, injury or sickness, it may be in the best welfare interests of the animal to be treated or euthanased aboard the vessel.

• If unloading is in the best welfare interests of animals that are fatigued, injured or sick, there should be appropriate facilities and equipment for the humane unloading of such animals. These animals should be unloaded in a manner that causes the least amount of suffering. After unloading, appropriate facilities and treatments should be provided for sick or injured animals.

Article 9

Actions in the event of a refusal to allow the import of a shipment

• The welfare of the animals should be the first consideration in the event of a refusal to import.

• When a shipment has been refused import, the Competent Authority of that country should make available suitable isolation facilities to allow the unloading of animals from a vessel and their secure holding, without posing a risk to the health of the national herd, pending resolution of the situation. In this situation, the priorities should be:
 o the Competent Authority of the importing country should provide urgently in writing the reasons for the refusal,
 o in the event of a refusal for animal health reasons, the Competent Authority of the importing country should provide urgent access to an OIE-appointed veterinarian(s) to assess the animals’ health status with regard to the importing country’s concerns, and the necessary facilities and approvals to expedite the required diagnostic testing
 o the Competent Authority of the importing country should provide access to allow continued assessment of the ongoing health and welfare situation,
 o if the matter cannot be promptly resolved, the Competent Authority of the exporting and importing countries should call on the OIE to mediate.

• In the event that the animals are required to remain on the vessel, the priorities should be:
 o the Competent Authority of the importing country should allow reprovision of the vessel with water and feed as necessary,
Appendix XXII (contd)

- the Competent Authority of the importing country should provide urgently in writing the reasons for the refusal,
- in the event of a refusal for animal health reasons, the Competent Authority of the importing country should provide urgent access to an OIE-appointed veterinarian(s) to assess the animals’ health status with regard to the importing country’s concerns, and the necessary facilities and approvals to expedite the required diagnostic testing,
- the Competent Authority of the importing country should provide access to allow continued assessment of the ongoing health and welfare situation,
- if the matter cannot be urgently resolved, the Competent Authorities of the exporting and importing countries should call on the OIE to mediate.

- The OIE should utilise its dispute settlement mechanism to identify a mutually agreed solution which will address the animal health and welfare issues in a timely manner.

Article 10

Species specific issues

Cattle are sociable animals and may become agitated if they are singled out. Social order is usually established at about two years of age. When groups are mixed, social order has to be re-established and aggression may occur until a new order is established. Crowding of cattle may also increase aggression as the animals try to maintain personal space. Social behaviour varies with age, breed and sex; Bos indicus and Bos indicus-cross animals are usually more temperamental than European breeds. Young bulls, when moved in groups, show a degree of playfulness (pushing and shoving) but become more aggressive and territorial with age. Adult bulls have a minimum personal space of six square metres. Cows with young calves can be very protective, and handling calves in the presence of their mothers can be dangerous.

Goats should be handled calmly and are more easily led or driven than if they are excited. When goats are moved, their gregarious tendencies should be exploited. Activities which frighten, injure or cause agitation to animals should be avoided. Bullying is particularly serious in goats. Housing strange goats together could result in fatalities, either through physical violence, or subordinate goats being refused access to food and water.

Sheep are sociable animals with good eyesight and tend to “flock together”, especially when they are agitated. They should be handled calmly and their tendency to follow each other should be exploited when they are being moved. Sheep may become agitated if they are singled out for attention and will strive to rejoin the group. Activities which frighten, injure or cause agitation to sheep should be avoided. They can negotiate steep ramps.

Pigs have poor eyesight, and may move reluctantly in strange surroundings. They benefit from well lit loading bays. Since they negotiate ramps with difficulty, these should be as level as possible. Ideally a hydraulic lift should be used for greater heights. Pigs also negotiate steps with difficulty. A good ‘rule-of-thumb’ is that no step should be higher than the pig’s front knee.
Horses in this context include all solipeps, donkeys, mules, hinnies and zebra. They have good eyesight and a very wide angle of vision. They may have a history of loading resulting in good or bad experiences. Good training should result in easier loading, but some horses can prove difficult, especially if they are inexperienced or have associated loading with poor transport conditions. In these circumstances two experienced handlers can load an animal by linking arms or using a strop below its rump. Blindfolding may even be considered. Ramps should be as shallow as possible. Steps are not usually a problem when horses mount a ramp, but they tend to jump a step when descending, so steps should be as low as possible. Horses benefit from being individually stalled, but may be transported in compatible groups. When horses are to travel in groups, their shoes should be removed.

Camelids in this context comprise llamas, alpacas, guanaco and vicuna. They have good eyesight and, like sheep, can negotiate steep slopes, though ramps should be as shallow as possible. They load most easily in a bunch as a single animal will strive to rejoin the others. Whilst they are usually docile, they have an unnerving habit of spitting in self-defence. During transport they usually lie down. They frequently extend their front legs forward when lying, so gaps below partitions should be high enough so that their legs are not trapped when the animals rise.
Appendix XXII (contd)

GUIDELINES FOR THE HUMANE KILLING OF ANIMALS
FOR DISEASE CONTROL PURPOSES

Article 1

General principles

This chapter is based on the premise that a decision to kill the animals has been made.

- All personnel involved in the humane killing of animals should have the relevant skills and competencies.

- As necessary, operational procedures should be adapted to the specific circumstances operating on the premises and should address, apart from animal welfare, operator safety, biosecurity and environmental aspects.

- Following the decision to kill the animals, killing should be carried out as quickly as possible and normal husbandry should be maintained until the animals are killed.

- The handling and movement of animals should be minimised and when done, it should be done in accordance with the guidelines described below.

- Animal restraint should be sufficient to facilitate effective killing, and in accordance with animal welfare and operator safety requirements; when restraint is required, killing should follow with minimal delay.

- When animals are killed for disease control purposes, methods used should result in immediate death or immediate loss of consciousness lasting until death; when loss of consciousness is not immediate, induction of unconsciousness should be non-aversive and should not cause anxiety, pain, distress or suffering in the animals.

- For animal welfare considerations, young animals should be killed before older animals; for biosecurity considerations, infected animals should be killed first, followed by in-contact animals, and then the remaining animals.

- There should be continuous monitoring of the procedures to ensure they are consistently effective with regard to animal welfare, operator safety and biosecurity.

- When the operational procedures are concluded, there should be a written report describing the practices adopted and their effect on animal welfare, operator safety and biosecurity.

- To the extent possible to minimise public distress, killing of animals and carcass disposal should be carried out away from public view.

- These general principles should also apply when animals need to be killed for other purposes such as after natural disasters.

Article 2

Organisational structure

Disease control contingency plans should be in place at a national level and should contain details of management structure, disease control strategies and operational procedures; animal welfare considerations should be addressed within these disease control contingency plans. The plans should also include a strategy to ensure that an adequate number of personnel trained in the humane killing of animals is available.
Appendix XXII (contd)

Disease control contingency plans should address the animal welfare issues that may result from animal movement controls.

The operational activities should be led by an official veterinarian who has the authority to appoint the personnel in the specialist teams and ensure that they adhere to the required animal welfare and biosecurity standards. When appointing the personnel, he/she should ensure that the personnel involved has the required competencies.

The official veterinarian should be responsible for all activities across one or more affected premises and should be supported by coordinators for planning (including communications), operations and logistics to facilitate efficient operations.

The official veterinarian should provide overall guidance to personnel and logistic support for operations on all affected premises to ensure consistency in adherence to the OIE animal welfare and animal health guidelines.

A specialist team, led by a team leader answerable to the official veterinarian, should be deployed to work on each affected premises. The team should consist of personnel with the competencies to conduct all required operations; in some situations, personnel may be required to fulfil more than one function. Each team should contain a veterinarian.

In considering the animal welfare issues associated with killing animals, the key personnel, their responsibilities and competencies required are described in Article 3.
Appendix XXII (contd)

Article 3

Responsibilities and competencies of the specialist team

Team leader

- Responsibilities
 - plan overall operations on an affected premises
 - determine and address requirements for animal welfare, operator safety and biosecurity
 - organise, brief and manage team of people to facilitate humane killing of the relevant animals on the premises in accordance with national regulations and these guidelines
 - determine logistics required
 - monitor operations to ensure animal welfare, operator safety and biosecurity requirements are met
 - report upwards on progress and problems
 - provide a written report at the conclusion of the killing, describing the practices adopted and their effect on animal welfare

- Competencies
 - appreciation of animal welfare and the underpinning behavioural, anatomical and physiological processes involved in the killing process
 - skills to manage all activities on premises and deliver outcomes on time
 - awareness of psychological effects on farmer, team members and general public
 - effective communication skills

Veterinarian

- Responsibilities
 - determine and implement the most appropriate killing method to ensure that animals are killed without avoidable pain and distress
 - determine and implement the additional requirements for animal welfare, including the order of killing
 - minimise the risk of disease spread within and from the premises through the supervision of biosecurity procedures
 - continuously monitor animal welfare and biosecurity procedures
 - in cooperation with the leader, prepare a written report at the conclusion of the killing, describing the practices adopted and their effect on animal welfare

- Competencies
 - ability to assess animal welfare, especially the effectiveness of stunning and killing and to correct any deficiencies
 - ability to assess biosecurity risks
Animal handlers

- Responsibilities
 - review on-site facilities in terms of their appropriateness
 - design and construct temporary animal handling facilities, when required
 - move and restrain animals

- Competencies
 - experience of animal handling in emergency situations and in close confinement

Slaughterers

- Responsibilities
 - ensure humane killing of animals through effective stunning and killing

- Competencies
 - when required by regulations, licensed to use necessary equipment or licensed to be slaughterers
 - competent to use and maintain relevant equipment
 - competent to use techniques for the species involved
 - competent to assess effective stunning and killing

Carcase disposal personnel

- Responsibilities
 - ensure efficient carcase disposal (to ensure killing operations are not hindered)

- Competencies
 - competent to use and maintain available equipment and apply techniques for the species involved

Farmer / owner / manager

- Responsibilities
 - assist when requested

- Competencies
 - specific knowledge of his/her animals and their environment

Article 4

Operational guidelines

Planning the humane killing of animals

Many activities will need to be conducted on affected premises, including the humane killing of animals. The team leader should develop a plan for humanely killing animals on the premises which should include consideration of:
Appendix XXII (contd)

- Minimising handling and movement of animals
- Killing the animals on the affected premises; however, there may be circumstances where the animals may need to be moved to another location for killing; when the killing is conducted at an abattoir, the guidelines in the Chapter on slaughter of animal for human consumption should be followed.
- The species, number, age and size of animals to be killed, and the order of killing them
- Methods of killing the animals, and their cost
- Housing and location of the animals
- The availability and effectiveness of equipment needed for killing of the animals
- The facilities available on the premises that will assist with the killing
- Biosecurity and environmental issues
- The health and safety of personnel conducting the killing
- Any legal issues that may be involved, for example where restricted veterinary drugs or poisons may be used, or where the process may impact on the environment, and
- The presence of other nearby premises holding animals.

In designing a killing plan, it is essential that the method chosen be consistently reliable to ensure that all animals are humanely and quickly killed.

Article 5

Table summarising killing methods described in Articles 6-17*

<table>
<thead>
<tr>
<th>Species</th>
<th>Age range</th>
<th>Procedure</th>
<th>Restraint necessary</th>
<th>Animal welfare concerns with inappropriate application</th>
<th>Article reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>All</td>
<td>free bullet</td>
<td>no</td>
<td>non-lethal wounding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>all except neonates</td>
<td>captive bolt - penetrating, followed by pithing or bleeding</td>
<td>yes</td>
<td>ineffective stunning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>adults only</td>
<td>captive bolt - non-penetrating, followed by bleeding</td>
<td>yes</td>
<td>ineffective stunning, regaining of consciousness before killing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>calves only</td>
<td>electrical, two stage application</td>
<td>yes</td>
<td>pain associated with cardiac arrest after ineffective stunning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>calves only</td>
<td>electrical, single application (method 1)</td>
<td>yes</td>
<td>ineffective stunning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>injection with barbiturates and others</td>
<td>yes</td>
<td>non-lethal dose, pain associated with injection site</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Age range</td>
<td>Procedure</td>
<td>Restraint necessary</td>
<td>Animal welfare concerns with inappropriate application</td>
<td>Article reference</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>------------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Sheep and goats</td>
<td>all</td>
<td>free bullet</td>
<td>no</td>
<td>non-lethal wounding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>all except neonates</td>
<td>captive bolt - penetrating, followed by pithing or bleeding</td>
<td>yes</td>
<td>ineffective stunning, regaining of consciousness before killing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>all except neonates</td>
<td>captive bolt - non-penetrating, followed by bleeding</td>
<td>yes</td>
<td>ineffective stunning, regaining of consciousness before killing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neonates</td>
<td>captive bolt - non-penetrating</td>
<td>yes</td>
<td>non-lethal wounding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>electrical, two stage application</td>
<td>yes</td>
<td>pain associated with cardiac arrest after ineffective stunning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>electrical, single application (Method 1)</td>
<td>yes</td>
<td>ineffective stunning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neonates only</td>
<td>CO₂ air mixture</td>
<td>yes</td>
<td>slow induction of unconsciousness, aversiveness of induction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neonates only</td>
<td>nitrogen/inert gas mixed with CO₂</td>
<td>yes</td>
<td>slow induction of unconsciousness, aversiveness of induction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neonates only</td>
<td>Nitrogen/inert gases</td>
<td>yes</td>
<td>slow induction of unconsciousness, aversiveness of induction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>injection of barbiturates and others</td>
<td>yes</td>
<td>non-lethal dose, pain associated with injection site</td>
<td></td>
</tr>
<tr>
<td>Pigs</td>
<td>all</td>
<td>free bullet</td>
<td>no</td>
<td>non-lethal wounding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>all except neonates</td>
<td>captive bolt - penetrating, followed by pithing or bleeding</td>
<td>yes</td>
<td>ineffective stunning,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neonates only</td>
<td>captive bolt - non-penetrating</td>
<td>yes</td>
<td>non-lethal wounding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All §</td>
<td>electrical, two stage application</td>
<td>yes</td>
<td>pain associated with cardiac arrest after ineffective stunning</td>
<td></td>
</tr>
</tbody>
</table>
Appendix XXII (contd)

<table>
<thead>
<tr>
<th>Species</th>
<th>Age range</th>
<th>Procedure</th>
<th>Restraint necessary</th>
<th>Animal welfare concerns with inappropriate application</th>
<th>Article reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigs</td>
<td>All</td>
<td>electrical, single application (Method 1)</td>
<td>yes</td>
<td>ineffective stunning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neonates only</td>
<td>CO₂ air mixture</td>
<td>yes</td>
<td>slow induction of unconsciousness, aversiveness of induction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neonates only</td>
<td>nitrogen/inert gas mixed with CO₂</td>
<td>yes</td>
<td>slow induction of unconsciousness, aversiveness of induction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neonates only</td>
<td>Nitrogen/inert gases</td>
<td>yes</td>
<td>slow induction of unconsciousness,</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>injection with barbiturates and others</td>
<td>yes</td>
<td>non-lethal dose, pain associated with injection site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultry</td>
<td>adults only</td>
<td>captive bolt - non-penetrating</td>
<td>yes</td>
<td>ineffective stunning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>day-olds and eggs only</td>
<td>maceration</td>
<td>no</td>
<td>non-lethal wounding, non- immediacy;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>adults only</td>
<td>electrical single application (Method 2)</td>
<td>yes</td>
<td>ineffective stunning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>adults only</td>
<td>electrical single application, followed by killing (Method 3)</td>
<td>yes</td>
<td>ineffective stunning; regaining of consciousness before killing</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>CO₂ air mixture Method 1 Method 2</td>
<td>yes</td>
<td>slow induction of unconsciousness, aversiveness of induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>nitrogen/inert gas mixed with CO₂</td>
<td>yes</td>
<td>slow induction of unconsciousness, aversiveness of induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>Nitrogen/inert gases</td>
<td>yes</td>
<td>slow induction of unconsciousness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>injection of barbiturates and others</td>
<td>yes</td>
<td>non-lethal dose, pain associated with injection site</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix XXII (contd)

<table>
<thead>
<tr>
<th>Species</th>
<th>Age range</th>
<th>Procedure</th>
<th>Restraint necessary</th>
<th>Animal welfare concerns with inappropriate application</th>
<th>Article reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry</td>
<td>adults only</td>
<td>addition of anaesthetics to feed or water, followed by an appropriate killing method</td>
<td>no</td>
<td>ineffective or slow induction of unconsciousness</td>
<td></td>
</tr>
</tbody>
</table>

* the methods are described in the order of mechanical, electrical and gaseous, not in an order of desirability from an animal welfare viewpoint

§ the only preclusion against the use of this method for neonates is the design of the stunning tongs that may not facilitate their application across such a small-sized head/body.

Article 6

Free bullet

Introduction

A free bullet is a projectile fired from a shotgun, rifle, handgun or purpose-made humane killer.

The most commonly used firearms for close range use are:

- humane killers (specially manufactured/adapted single-shot weapons)
- shotguns (12, 16, 20, 28 bore and .410)
- rifles (.22 rimfire)
- handguns (various calibres from .32 to .45)

The most commonly used firearms for long range use are:

- rifles (.22, .243, .270 and .308)

A free bullet used from long range should be aimed to penetrate the skull or soft tissue at the top of the neck of the animal, to cause irreversible concussion and death and should only be used by properly trained and competent marksmen.

Requirements for effective use

- The marksman should take account of human safety in the area in which he/she is operating
- The marksman should ensure that the animal is not moving and in the correct position to enable accurate targeting and the range should be as short as possible (5 –50 cm for a shotgun) but the barrel should not be in contact with the animal’s head
- The correct cartridge, calibre and type of bullet for the different species age and size should be used. Ideally the ammunition should expand upon impact and dissipate its energy within the cranium
- Shot animals should be checked to ensure the absence of brain stem reflexes.
Appendix XXII (contd)

Figure 1. The optimum shooting position for cattle is at the intersection of two imaginary lines drawn from the rear of the eyes to the opposite horn buds.

Figure 2. The optimum shooting position for hornless sheep and goats is on the midline, just above the eyes and directing the shot down the line of the spinal chord.

Figure 3. The optimum shooting position for heavily horned sheep and horned goats is behind the poll.
Figure 4. The optimum shooting position for pigs is just above the eyes and directing the shot down the line of the spinal chord.

Advantages
- Used properly, it provides a quick and effective method for killing
- It requires minimal or no restraint and can be used to kill from a distance
- It is suitable for killing agitated animals in open spaces

Disadvantages
- Potentially dangerous to humans and other animals in the area
- Potential for non-lethal wounding
- Destruction of brain tissue may preclude diagnosis of some diseases
- Leakage of bodily fluids may present a biosecurity risk
- Legal requirements may preclude or restrict use
- Limited availability of competent personnel

Conclusions
- A suitable method for cattle, sheep, goats and pigs, including large animals in open spaces.
Appendix XXII (contd)

Article 7

Penetrating captive bolt

Introduction

A penetrating captive bolt is fired from a gun powered by either compressed air or a blank cartridge. There is no free projectile.

The captive bolt should be aimed on the skull in a position to penetrate the cortex and mid-brain of the animal. The impact of the bolt on the skull produces unconsciousness. Physical damage to the brain caused by penetration of the bolt may result in death, however pithing or bleeding should be performed as soon as possible after the shot to ensure the death of the animal.

Requirements for effective use

- For cartridge powered and compressed air guns, the bolt velocity and the length of the bolt should be appropriate to the species and type of animal, in accordance with the manufacturer’s recommendations
- Captive bolt guns should be frequently cleaned and maintained in good working condition
- More than one gun may be necessary to avoid overheating and a back-up gun should be available in the event of an ineffective shot
- Animals should be restrained; at a minimum they should be penned for cartridge powered guns and in a race for compressed air guns
- The operator should ensure that the animal’s head is accessible
- The operator should fire the captive bolt at right angles to the skull in the optimal position (see figures 1, 3 & 4. The optimum shooting position for hornless sheep is on the highest point of the head, on the midline and aim towards the angle of the jaw)
- To ensure the death of the animal, pithing or bleeding should be performed as soon as possible after stunning
- Animals should be monitored continuously after stunning until death to ensure the absence of brain stem reflexes

Advantages

- Mobility of cartridge powered equipment reduces the need to move animals
- Immediate onset of a sustained period of unconsciousness

Disadvantages

- Poor gun maintenance and misfiring, and inaccurate gun positioning and orientation may result in poor animal welfare
- Post stun convulsions may make pithing difficult and hazardous
- Difficult to apply in agitated animals
- Repeated use of a cartridge powered gun may result in over-heating
Leakage of bodily fluids may present a biosecurity risk

Destruction of brain tissue may preclude diagnosis of some diseases

Conclusion

A suitable method for cattle, sheep, goats and pigs (except neonates), when followed by pithing.

Article 8

Captive bolt - non-penetrating

Introduction

A non-penetrating captive bolt is fired from a gun powered by either compressed air or a blank cartridge. There is no free projectile.

The gun should be placed on the front of the skull to deliver a percussive blow which produces unconsciousness in cattle (adults only), sheep, goats and pigs, and death in poultry and neonate sheep, goats and pigs. In mammals, bleeding should be performed as soon as possible after the blow to ensure the death of the animal.

Requirements for effective use

• For cartridge powered and compressed air guns, the bolt velocity should be appropriate to the species and type of animal, in accordance with the manufacturer's recommendations

• Captive bolt guns should be frequently cleaned and maintained in good working condition

• More than one gun may be necessary to avoid overheating and a back-up gun should be available in the event of an ineffective shot

• Animals should be restrained; at a minimum mammals should be penned for cartridge powered guns and in a race for compressed air guns; birds should be restrained in cones, shackles, crushes or by hand.

• The operator should ensure that the animal's head is accessible

• The operator should fire the captive bolt at right angles to the skull in the optimal position (Figures 1-5)

• To ensure death in non-neonate mammals, bleeding should be performed as soon as possible after stunning

• Animals should be monitored continuously after stunning until death to ensure the absence of brain stem reflexes

Advantages

• Immediate onset of unconsciousness, and death in birds and neonates

• Mobility of equipment reduces the need to move animals
Appendix XXII (contd)

Disadvantages

- As consciousness can be regained quickly in non-neonate mammals, they should be bled as soon as possible after stunning
- Laying hens in cages have to be removed from their cages and most birds have to be restrained
- Poor gun maintenance and misfiring, and inaccurate gun positioning and orientation may result in poor animal welfare
- Post stun convulsions may make bleeding difficult and hazardous
- Difficult to apply in agitated animals; such animals may be sedated in advance of the killing procedure
- Repeated use of a cartridge powered gun may result in over-heating
- Bleeding may present a biosecurity risk

Conclusions

- A suitable method for poultry, and neonate sheep, goats and pigs.
- If bleeding does not present a biosecurity issue, this is a suitable method for cattle (adults only), and non-neonate sheep, goats and pigs.

Article 9

Maceration

Introduction
Maceration, utilising a mechanical apparatus with rotating blades or projections, causes immediate fragmentation and death in day-old poultry and embryonated eggs

Requirements

- Maceration requires specialised equipment which should be kept in excellent working order
- The rate of introducing the birds should not allow the equipment to jam, birds to rebound from the blades or the birds to suffocate before they are macerated

Advantages

- Procedure results in immediate death
- Large numbers can be killed quickly

Disadvantages

- Specialised equipment is required
- Macerated tissues may present a biosecurity issue

Conclusion
A suitable method for killing day-old poultry and embryonated eggs.
Appendix XXII (contd)

Article 10

Electrical – two stage application

Introduction

A two stage application of electric current comprises firstly an application of current to the head by scissor-type tongs, immediately followed by an application of the tongs across the chest in a position that spans the heart.

The application of sufficient electric current to the head will induce ‘ tonic/clonic’ epilepsy and unconsciousness. Once the animal is unconscious, the second stage will induce ventricular fibrillation (cardiac arrest) resulting in death. The second stage (the application of low frequency current across the chest) should only be applied to unconscious animals to prevent unacceptable levels of pain.

Requirements for effective use

- The stunner control device should generate a low frequency (30 – 60 Hz) current with a minimum voltage of 250 volts true RMS under load.
- Appropriate protective clothing (including rubber gloves and boots) should be worn.
- Animals should be restrained, at a minimum free-standing in a pen, close to an electrical supply.
- Two team members are required, the first to apply the electrodes and the second to manipulate the position of the animal to allow the second application to be made.
- A stunning current should be applied via scissor-type stunning tongs in a position that spans the brain for a minimum of 3 seconds; immediately following the application to the head, the electrodes should be transferred to a position that spans the heart and the electrodes applied for a minimum of 3 seconds.
- Electrodes should be cleaned regularly and after use, to enable optimum electrical contact to be maintained.
- Animals should be monitored continuously after stunning until death to ensure the absence of brain stem reflexes.

Advantages

- The application of the second stage minimises post-stun convulsions and therefore the method is particularly effective with pigs.
- Non-invasive technique minimises biosecurity risk.

Disadvantages

- Requires a reliable supply of electricity.
- The electrodes must be applied and maintained in the correct positions to produce an effective stun and kill.
Appendix XXII (contd)

- Most stunner control devices utilise low voltage impedance sensing as an electronic switch prior to the application of high voltages; in unshorn sheep, contact impedance may be too high to switch on the required high voltage (especially during stage two).

- The procedure may be physically demanding, leading to operator fatigue and poor electrode placement.

Conclusion

- A suitable method for calves, sheep and goats, and especially for pigs (over one week of age).

Article 11

Electrical – single application

Introduction

Method 1 comprises the single application of sufficient electrical current to the head and back, to simultaneously stun the animal and fibrillate the heart. Provided sufficient current is applied in a position that spans both the brain and heart, the animal will not recover consciousness.

Method 2 stuns and kills by drawing inverted and shackled poultry through an electrified waterbath stunner. Electrical contact is made between the ‘live’ water and earthed shackle and, when sufficient current is applied, poultry will be simultaneously stunned and killed.

Method 3 comprises the single application of sufficient electrical current to the head of poultry in a position that spans the brain, causing unconsciousness; this is followed by a killing method (Article 17).

Method 1

Requirements for effective use

- The stunner control device should generate a low frequency (30 – 60 Hz) current with a minimum voltage of 250 volts true RMS under load.

- Appropriate protective clothing (including rubber gloves and boots) should be worn.

- Animals should be individually and mechanically restrained close to an electrical supply as the maintenance of physical contact between the stunning electrodes and the animal is necessary for effective use.

- The rear electrode should be applied to the back, above or behind the heart, and then the front electrode in a position that is forward of the eyes, with current applied for a minimum of 3 seconds.

- Electrodes should be cleaned regularly between animals and after use, to enable optimum electrical contact to be maintained.

- Water or saline may be necessary to improve electrical contact with sheep.

- An effective stun and kill should be verified by the absence of brain stem reflexes.

Advantages

- Stuns and kills simultaneously.

- Minimises post-stun convulsions and therefore is particularly effective with pigs.

- A single team member only is required for the application.
• Non-invasive technique minimises biosecurity risk.

Disadvantages
• Requires individual mechanical animal restraint.
• The electrodes must be applied and maintained in the correct positions to produce an effective stun and kill.
• Requires a reliable supply of electricity.

Conclusions
• A suitable method for calves, sheep, goats, and pigs (over 1 week of age).

Method 2

Requirements for effective use
• A mobile waterbath stunner and a short loop of processing line are required.
• A low frequency (30-60 Hz) current applied for a minimum of 3 seconds is necessary to stun and kill the birds.
• Poultry need to be manually removed from their cage, house or yard, inverted and shackled onto a line which conveys them through a waterbath stunner with their heads fully immersed.
• Required minimum currents to stun and kill dry birds are:
 ▪ Quail - 100 mA/bird
 ▪ Chickens – 160 mA/bird
 ▪ Ducks & Geese – 200 mA/bird
 ▪ Turkeys – 250 mA/bird.
A higher current is required for wet birds.
• An effective stun and kill should be verified by the absence of brain stem reflexes.

Advantages
• Stuns and kills simultaneously.
• Capable of processing large numbers of birds reliably and effectively.
• Non-invasive technique minimises biosecurity risk.

Disadvantages
• Requires a reliable supply of electricity.
• Handling, inversion and shackling of birds are required.

Conclusion
A suitable method for large numbers of poultry.
Appendix XXII (contd)

Method 3

Requirements for effective use

- The stunner control device should generate sufficient current (more than 300 mA/bird) to stun.
- Appropriate protective clothing (including rubber gloves and boots) should be worn.
- Birds should be restrained, at a minimum manually, close to an electrical supply.
- A stunning current should be applied in a position that spans the brain for a minimum of 3 seconds; immediately following this application, the birds should be killed (Article 17).
- Electrodes should be cleaned regularly and after use, to enable optimum electrical contact to be maintained.
- Birds should be monitored continuously after stunning until death to ensure the absence of brain stem reflexes.

Advantages

- Non-invasive technique (when combined with neck dislocation) minimises biosecurity risk.

Disadvantages

- Requires a reliable supply of electricity.
- The electrodes must be applied and maintained in the correct position to produce an effective stun.

Conclusion

Suitable for small numbers of poultry.

Article 12

CO₂ / air mixture

Introduction

Controlled atmosphere killing is performed by exposing animals to a predetermined gas mixture, either by placing them in a gas-filled container or apparatus (Method 1) or by the gas being introduced into a poultry house (Method 2).

Inhalation of carbon dioxide (CO₂) induces respiratory and metabolic acidosis and hence reduces the pH of cerebrospinal fluid (CSF) and neurones thereby causing unconsciousness and, after prolonged exposure, death.

Method 1

Requirements for effective use in a container or apparatus

- Containers or apparatus should allow the required gas concentration to be maintained and accurately measured.
• When animals are exposed to the gas individually or in small groups in a container or apparatus, the equipment used should be designed, constructed, and maintained in such a way as to avoid injury to the animals and allow them to be observed.

• Animals should be introduced into the container or apparatus after it has been filled with the required CO\textsubscript{2} concentration, and held in this atmosphere until death is confirmed.

• Team members should ensure that there is sufficient time allowed for each batch of animals to die before subsequent ones are introduced into the container or apparatus.

• Containers or apparatus should not be overcrowded and measures are needed to avoid animals suffocating by climbing on top of each other.

Advantages

• CO\textsubscript{2} is readily available.

• Application methods are simple.

Disadvantages

• The need for special equipment

• The aversive nature of high CO\textsubscript{2} concentrations

• No immediate loss of consciousness

• The risk of suffocation due to overcrowding

• Difficulty in verifying death while the animals are in the container or apparatus.

Conclusion

Suitable for use in poultry and neonatal sheep, goats and pigs.

Method 2

Requirements for effective use in a poultry house

• Prior to introduction of the CO\textsubscript{2}, the poultry house should be appropriately sealed to allow control over the gas concentration.

• The house should be gradually filled with CO\textsubscript{2} so that all birds are exposed to a concentration of >40\% until they are dead; a vaporiser may be required to prevent freezing.

• Devices should be used to accurately measure the gas concentration at the highest level of birds.

Advantages

• Applying gas to birds \textit{in situ} eliminates the need to manually remove live birds.

• CO\textsubscript{2} is readily available.

• Gradual raising of CO\textsubscript{2} concentration minimises the aversiveness of the induction of unconsciousness.
Appendix XXII (contd)

Disadvantages

- Difficulty in determining volume of gas required to achieve adequate concentrations of CO₂ in some poultry houses
- Difficulty in verifying death while the birds are in the poultry house.

Conclusion

Suitable for use in poultry in closed-environment sheds

Article 13

Nitrogen/inert gas mixed with CO₂

Introduction

CO₂ may be mixed in various proportions with nitrogen or an inert gas eg argon, and the inhalation of such mixtures leads to hypercapnic-hypoxia and death when the oxygen concentration by volume is ≤2%. This method involves the introduction of animals into a container or apparatus containing the gases. Such mixtures do not induce immediate loss of consciousness, therefore the aversiveness of various gas mixtures containing high concentrations of CO₂ and the respiratory distress occurring during the induction phase, are important animal welfare considerations.

Pigs and poultry appear not to find low concentrations of CO₂ strongly aversive, and a mixture of nitrogen or argon with ≤30% CO₂ by volume and ≤2% O₂ by volume can be used for killing poultry and neonatal sheep, goats and pigs.

Requirements for effective use

- Containers or apparatus should allow the required gas concentrations to be maintained, and the O₂ and CO₂ concentrations accurately measured.
- When animals are exposed to the gases individually or in small groups in a container or apparatus, the equipment used should be designed, constructed, and maintained in such a way as to avoid injury to the animals and allow them to be observed.
- Animals should be introduced into the container or apparatus after it has been filled with the required gas concentrations (with ≤2% O₂), and held in this atmosphere until death is confirmed.
- Team members should ensure that there is sufficient time allowed for each batch of animals to die before subsequent ones are introduced into the container or apparatus.
- Containers or apparatus should not be overcrowded and measures are needed to avoid animals suffocating by climbing on top of each other.

Advantages

- Low concentrations of CO₂ cause little aversiveness and, in combination with nitrogen or an inert gas, produces a fast induction of unconsciousness.

Disadvantages

- Need for a properly designed container or apparatus
- Difficulty in verifying death while the animals are in the container or apparatus
Appendix XXII (contd)

- No immediate loss of consciousness
- Exposure times required to kill are considerable.

Conclusion
A suitable method for poultry and neonatal sheep, goats and pigs.

Article 14
Nitrogen and/or inert gasses

Introduction
This method involves the introduction of animals into a container or apparatus containing nitrogen or an inert gas such as argon. The controlled atmosphere produced leads to unconsciousness and death from hypoxia.

Research has shown that hypoxia is not aversive to pigs and poultry, and it doesn’t induce any signs of respiratory distress prior to loss of consciousness.

Requirements for effective use
- Containers or apparatus should allow the required gas concentrations to be maintained, and the \(\text{O}_2 \) concentration accurately measured.
- When animals are exposed to the gases individually or in small groups in a container or apparatus, the equipment used should be designed, constructed, and maintained in such a way as to avoid injury to the animals and allow them to be observed.
- Animals should be introduced into the container or apparatus after it has been filled with the required gas concentrations (with \(\leq 2\% \text{ O}_2 \)), and held in this atmosphere until death is confirmed.
- Team members should ensure that there is sufficient time allowed for each batch of animals to die before subsequent ones are introduced into the container or apparatus.
- Containers or apparatus should not be overcrowded and measures are needed to avoid animals suffocating by climbing on top of each other.

Advantages
- Animals are unable to detect nitrogen or inert gases, and the induction of hypoxia by this method is not aversive to animals.

Disadvantages
- Need for a properly designed container or apparatus
- Difficulty in verifying death while the animals are in the container or apparatus
- No immediate loss of consciousness
- Exposure times required to kill are considerable.
Appendix XXII (contd)

Conclusion

A suitable method for poultry and neonatal sheep, goats and pigs.

Article 15

Lethal injection

Introduction

A lethal injection using high doses of anaesthetic and sedative drugs causes CNS depression, unconsciousness and death. In practice, barbiturates in combination with other drugs are commonly used.

Requirements for effective use

- Doses and routes of administration that cause rapid loss of consciousness followed by death should be used.
- Prior sedation may be necessary for some animals.
- Intravenous administration is preferred, but intraperitoneal or intramuscular administration may be appropriate, especially if the agent is non-irritating.
- Animals should be restrained to allow effective administration.
- Animals should be monitored to ensure the absence of brain stem reflexes.

Advantages

- The method can be used in all species.
- Death can be induced smoothly.

Disadvantages

- Restraint and/or sedation may be necessary prior to injection.
- Some combinations of drug type and route of administration may be painful, and should only be used in unconscious animals.
- Legal requirements may restrict use to veterinarians.

Conclusion

A suitable method for killing small numbers of cattle, sheep, goats, pigs and poultry.

Article 16

Addition of anaesthetics to feed or water

Introduction

An anaesthetic agent which can be mixed with poultry feed or water may be used to kill poultry in houses. Poultry which are only anaesthetised need to be killed by another method such as cervical dislocation.

Requirements for effective use

- Sufficient quantities of anaesthetic need to be ingested rapidly for effective response.
• Intake of sufficient quantities is facilitated if the birds are fasted or water is withheld.
• Must be followed by killing (see Article 17) if birds are anaesthetised only.

Advantages
• Handling is not required until birds are anaesthetised.
• May be biosecurity advantages in the case of large numbers of diseased birds.

Disadvantages
• Non-target animals may accidentally access the medicated feed or water when provided in an open environment.
• Dose taken is unable to be regulated and variable results may be obtained.
• Animals may reject adulterated feed or water due to illness or adverse flavour.
• May need to be followed by killing.
• Care is essential in the preparation and provision of treated feed or water, and in the disposal of uneaten treated feed/water and contaminated carcasses.

Conclusion
A suitable method for killing large numbers of poultry in houses.

Article 17

Killing methods in unconscious animals

Method 1 Cervical dislocation (manual and mechanical)

Introduction
Poultry may be killed by either manual cervical dislocation (stretching) or mechanical neck crushing with a pair of pliers. Both methods result in death from asphyxiation and/or cerebral anoxia.

Requirements for effective use
• Killing should be performed either by manually or mechanically stretching the neck to sever the spinal cord or by using mechanical pliers to crush the cervical vertebrae with consequent major damage to the spinal cord.
• Consistent results require strength and skill so team members should be rested regularly to ensure consistently reliable results.
• Birds should be monitored continuously until death to ensure the absence of brain stem reflexes.

Advantages
• It is a non-invasive killing method
• Can be performed manually on small birds.
Appendix XXII (contd)

Disadvantages

- Operator fatigue
- The method is more difficult in larger birds.

Conclusion

This method is suitable for killing unconscious poultry.

Method 2 Decapitation

Introduction

Decapitation results in death by cerebral ischaemia using a guillotine or knife.

Requirements for effective use

- The required equipment should be kept in good working order

Advantages

- The technique is effective and does not require monitoring

Disadvantages

- Contamination of the working area with body fluids

Conclusion

This method is suitable for killing unconscious poultry.

Method 3 Pithing

Introduction

Pithing is a method of killing animals which have been stunned by a penetrating captive bolt. Pithing results in the physical destruction of the brain and upper regions of the spinal cord, through the insertion of a rod or cane through the bolt hole.

Requirements for effective use

- Pithing cane or rod
- Access to the head of the animal and to the brain through the skull
- Animals should be monitored continuously until death to ensure the absence of brain stem reflexes.

Advantages

- The technique is effective in producing immediate death

Disadvantages

- Delayed and/or ineffective pithing due to convulsions
- Contamination of the working area with body fluids
Conclusion

This method is suitable for killing unconscious animals which have been stunned by a penetrating captive bolt.

Method 4 Bleeding

Introduction

Bleeding is a method of killing animals through the severance of the major blood vessels in the neck or chest that results in a rapid fall in blood pressure, leading to cerebral ischaemia and death.

Requirements for effective use

- Sharp knife
- Access to the neck or chest of the animal
- Animals should be monitored continuously until death to ensure the absence of brain stem reflexes.

Advantages

- The technique is effective in producing death after an effective stunning method which does not permit pithing.

Disadvantages

- Delayed and/or ineffective bleeding due to convulsions
- Contamination of the working area with body fluids.

Conclusion

This method is suitable for killing unconscious animals.
APPENDIX 3.6.5

GENERAL GUIDELINES
FOR THE DISPOSAL OF CARCASSES

Introduction

The mass destruction and disposal of animals in the event of an animal disease outbreak are always subject to intense public and media scrutiny thereby obligating the Veterinary Administration of a Member Country to not only conduct carcass disposal operations within acceptable scientific principles to destroy the causative pathogen of disease but also to satisfy animal welfare, public and environmental concerns.

The guidelines in this Appendix are general and generic in nature. They are recommended for adoption after consideration of the application best suited to prevailing circumstances of a specific disease outbreak. The choice of one or more of the recommended technologies should be in compliance with the mandates provided for within relevant local and national legislation and be attainable with the resources available within the Member Country. The guidelines should also be read and applied in conjunction with the procedures described for the humane killing of animals in Appendix XXX of the Code.

The chapter aims to briefly describe the definitions applicable to the disposal of carcasses, outline the regulatory and jurisprudence requirements that should be considered, identify the most important risk factors associated with the disposal of carcasses, list the social factors and practical considerations relevant to carcass disposal, give guidelines on appropriate technologies that could be applied and give guidance on the decision-making process in electing the most appropriate technology for the disposal of carcasses under specific circumstances.

Where indicated within the relevant chapters of the Code, the vaccination of animals in combination with or without a stamping-out policy to contain a disease outbreak could be the preferred choice above mass destruction. The eventual decision to embark on the mass destruction and disposal of animals to contain a disease outbreak should be carefully evaluated against available alternatives, environmental, socio-political and socio-economical concerns, trade implications as well as prevailing ethical and ethnic beliefs and preferences.

Definitions

For the purpose of this Appendix the following definitions relevant to the disposal of carcasses shall apply:

- **Carcass** - means the body of an animal subsequent to euthanasia or death that requires safe destruction.

- **Disposal** - means the inactivation of the pathogen with reduction of the carcass and related materials to constituent components.

- **Technology** - means the process by which disposal is achieved.

- **Transport** - means the bio-secure removal of animals or carcasses or material from the site of infection to the site of disposal.

- **Bio-security** - means the absolute containment of infection.
Appendix XXIII (contd)

- **Human safety** - means elimination of risks to the health and well-being of the persons involved in animal disposal procedures.

- **Animal welfare** - means reference to guidelines established for humane killing as defined in Appendix XXX.

- **Mass destruction** - means an emergency destruction and disposal of a large number of animals for disease control purposes

Regulations and jurisdiction

The laws regulating animal health, prevention and eradication of animal diseases, and the organisation of the *Veterinary Administration* should give the *Veterinary Services* the authority and the legal powers to carry out the necessary activities for an efficient and effective disposal of carcasses. For most of the disposal options, legislation of other governmental bodies at national or local level is in force and should be respected. Therefore close co-operation between the *Veterinary Service* and these authorities is indispensable to develop a coherent set of legal measures for carcass disposal in peace time in order to apply these undisturbed where and when it is necessary. In this context the following aspects should be clearly regulated:

- Right of entry on a farm and its premises for personnel of the *Veterinary Service* and of contractors working for the *Veterinary Service*.

- Total movement ban to be applied on an infected or suspected farm and the authority to make exemptions under certain bio-security conditions - for instance for transport of carcasses to another location for disposal.

- The obligation for the involved farmer, his relatives and his personnel to co-operate with and to apply all the measures ordered by the *Veterinary Service*.

As regard to infected and suspected animals and their products:

- the transfer of the ownership of these to the competent authority (for instance through confiscation or buying up with compensation of the farmer) and

- the right to kill these animals on the farm or wherever the *Veterinary Service* determines.

If burning of the carcasses is the option of choice:

- the Veterinary Service should have the authority to determine the place where the pyre is situated,

- national and local governmental organisations competent for the protection of the environment should have given their approval for this solution in advance and should have adopted the necessary legal framework to allow this and

- all involved authorities should have determined on the conditions for removal of the ashes.

If mass burial, mounding or open farm burial is the preferred option:

- the Veterinary Service should have the authority to determine the place of burial in accordance with other involved authorities,
Appendix XXIII (contd)

- national and local governmental organisations competent for the protection of the environment and subsoil water reserves should have agreed with this solution and should have adopted the necessary legislation and

- all involved authorities should have determined together the regime applicable to the site after the burial.

If rendering or any other centralised processing is the preferred option:

- the Veterinary Service should have the authority to require the necessary capacity at the processing company and to determine priorities,

- national and local governmental organisations regulating these types of processing should have agreed with the increased production volumes and other related consequences beforehand and should have covered the legal aspects and

- all involved authorities should have determined on the conditions applicable to the products from these carcasses.

It might happen that the chosen option for carcass disposal has to be applied near the border of a neighbouring country. In such cases the competent authorities of this country should be consulted and common legal solutions should be found in order to prevent misunderstanding and conflict.

If there is insufficient capacity in the country for processing of carcasses and if other options for carcass disposal are also limited, a solution could be the processing in another country. However, when an outbreak of an infectious animal disease occurs in a country, governments take preventive measures against import of potentially infected animals and products from the infected region. Those measures will also prevent the importation and transport of carcasses to a processing plant. If the export option is the choice, the conditions should be well established between the two involved countries and all legal aspects cleared beforehand. It should be realised that strong opposition can be expected from the farming community in the importing country against such transports. An agreement and preparation of the necessary legal aspects in peace time will help to apply this solution rapidly when it is needed. Clear communication about the process to be followed will help to elicit public support.

Pre-outbreak activities

The decision to embark on the mass destruction and disposal of animals in the event of a major disease outbreak or the mass disposal of animals in the event of natural disasters such as floods, and the implementation of the decision, need often to be taken in a short limit of time and activities to execute the decision, must similarly proceed with the minimum delay. The success or failure however, is primarily determined by the structures, policies and infrastructure that were established and agreed upon well in advance of such an event within contingency plans and working relationships and responsibilities established in preparation with other supportive structures.

- Technical preparedness – implies a predetermined decision process enunciated in a document, training of staff in the technical aspects of applicable technologies and the development of instructional manuals such as standing operating procedures (SOP’s) for events of disposal. The sensitivity and public scrutiny on the process of carcass disposal requires that a trained and competent official must be available on site. Such an official must be familiar with procedures to conduct the chosen technologies for carcass disposal.
Appendix XXIII (contd)

- **Financial preparedness** - the factors of a compensation mechanism to assist affected producers; access to emergency funding permitting rapid and effective action; and access to an expanded human resource through agreements with private veterinarians, are considered critical to the success of the program. To be effective, these factors must be considered, resolved and in place prior to a disease occurrence. Transparency on the criteria for compensation and the minimum delay in the execution of payments are critical factors to ensure cooperation from affected farmers.

- **Pre-established partnerships** - a relationship with industry is essential to obtain compliance with animal health policies. Partnerships should not only include farmer associations or commodity representatives but also animal welfare organisations, supportive structures such as security services, disaster management units within government structures, the media and consumer representative groupings. This relationship is encouraged and essential to enhance the receptivity to future risk communications. In some countries tourism is a very significant contributor to the national economy and can be adversely affected by animal disposal and emergency operations.

- **Communication plan** - the *Veterinary Administration* must accept that the information on any event of mass culling and disposal of animals cannot and should not be withheld from public scrutiny. Sharing the information based on scientific facts on an ongoing basis is essential. Information sharing with politicians and the media is especially important but information sharing with officials involved in the outbreak, affected farmers and professional organizations is equally essential but often neglected or forgotten. A well informed and knowledgeable spokesman should be available at all times to answer questions from the media and the public. Consistency in the information given is essential and should be guided by an available set of pre-empted well debated questions and answers that should be daily updated. An essential pre-requisite is to ensure ownership by politicians for the policies applied for the mass destruction and disposal of animals to contain a disease outbreak. The support by politicians should already be established in policy formulation and budgetary processes by the *Veterinary Administration* of the Member Country.

- **Equipment** – a supply of essential emergency equipment should be available immediately while contracts with rendering plants should be established as a default standing arrangement. The management of equipment should include provisions for expansion, temporary storing facilities, transport, and transport on farm, drivers, disinfection, mobile handling facilities for animals such as mobile crush-pens, protective and disposable material and logistical support. Procurement procedures should be simplified and special authorizations provided for the operation to enable the minimum delay in obtaining essential equipment and to supplement or replace existing equipment. Equipment would also include the type of burning material used for pyre burning of carcasses. In some countries sufficient wood would still be available but usage thereof is subject to environmental legislation and environmental concerns. Old vehicle tyres are a cheap and readily accessible alternative to wood but could be a source of environmental pollution and should only be used if sanctioned by applicable local or national legislation. The prior identification of sources of burning material are therefore essential so that it could be obtained with the minimum loss of time and effort when needed.

- **Transport arrangements** – The transport needed during mass disposal of animals are generally not included in the normal stock of vehicles of a *Veterinary Administration*. Heavy trucks, tractors, bulldozers, front-end loaders and the like, are all types of vehicles needed for transport of animals, collection of burning material, filling and closure of disposal sites and transport from the farm to a disposal site. It is important to ensure that the vehicles used do not pose a source for dissemination of the infection.
Risk factors

The list of risk factors has not the pretension to be complete. Other risk factors may influence the choice of a technique for carcass disposal as well.

- **Speed** - early detection of new infections, immediate killing of infected animals and rapid removal of the carcasses with inactivation of the pathogen are of utmost importance for the eradication of infectious diseases. Viral pathogens will not further multiply after the host is killed, but active and passive spread of the pathogen from the carcasses and their surroundings should be blocked as soon and as effectively as possible.

- **Occupational health safety** - carcasses in decomposition soon become a health risk for the persons who have to handle them during the process of disposal. Disposal should be organised in such a way that the workers are safeguarded against the risks of handling decomposed dead bodies. However special attention should be given to zoonotic aspects of certain pathogens as for instance avian influenza. Workers should be sufficiently protected against infection with a zoonotic pathogen (protective clothing, gloves, face masks, spectacles, vaccination, anti viral medicines, regular health checks).

- **Pathogen inactivation** - the chosen disposal procedure must give optimal safety as regards to the inactivation of the pathogen. If this cannot be achieved instantly, the spreading of the pathogen from the process should be blocked. Scientific information about the reduction of the pathogenic agent over time under the expected climatological conditions for any of the technologies should be the basis for the lifting of restrictions for the products or sites

- **Environmental concerns** - the different technologies for carcass disposal have different effects on the environment. For instance pyre burning will produce smoke and smells; burial might lead to gas production; escape of these gases and as a result smell; but also risk of contamination of air, soil, surface and sub surface water. Increased operating hours or increased throughput in a rendering plant may lead to increased smell or disturbances in the normal functioning of the waste water treatment and other protective facilities of the plant.

- **Availability of capacity** - practically all the technologies for carcass disposal have limitations on capacity. When the number of carcasses to be disposed of is high, the capacity of the acceptable technologies will soon be the bottle neck. An assessment of possibilities and capacities in peace time is very important to be able to take quick decisions in case of emergency. Temporary storage of carcasses in cold stores could sometimes relieve the lack of processing capacity.

- **Cost** - technologies for carcass disposal and specially those using sophisticated equipment are very costly. Budgetary provisions should be made for emergencies. When the Veterinary Service during a disease outbreak seeks the cooperation of private companies offering the needed capacity, the costs might escalate tremendously. Therefore it is necessary to negotiate a contract in peace time with those suppliers about capacities and costs when preparing a strategy for eradication.

- **Public reaction** - carcass disposal can easily lead to adverse reactions from the public when pictures of half burned or hoisted carcasses are shown on TV or in press. Urbanised populations estranged from rural practices will react often very emotionally on these images. In poorer countries the destruction of valuable meat of not yet sick animals may provoke public misunderstanding.
Appendix XXIII (contd)

- **Acceptance by farmers** - the owners of an infected farm will in general prefer technologies at a distance and not on their own farm. Farmers outside an infected zone will prefer disposal within the infected area. All farmers will be very sensitive with regard to the safety measures taken to prevent spread of the disease by the used technology and the transport of the carcasses to the processing plant or disposal site. Proper compensation of owners for the loss of their animals or for the disposition of burial or burning sites will improve acceptability.

- **Transport** - for the application of all technologies for disposal, cranes, shovels and trucks must be used to transport the carcasses. This equipment can transfer the infection to other farms. Cleaning and disinfection of the outside surfaces of these vehicles when leaving an infected premise should receive special attention. The hygiene of the driver, his cabin, his lockers and his clothing and footwear should also be part of this process. The trucks transporting carcasses should be leak proof and be completely covered in order to prevent spread of the pathogen from the truck. The Veterinary Service should supervise the departure of the vehicle from the farm, the route the transport passes and the arrival at the disposal plant or site.

- **Wildlife** - many infectious diseases can affect wild animals as well as domesticated animals. Sometimes farm animals become infected through contact with game, but the population of wild animals might also become infected from an outbreak of a disease on a farm. When disposing of carcasses full attention should be given to the prevention of contamination of wildlife. Predators could try to get access to dead carcasses which might cause active or passive spread of the infection to other wild or domesticated animals.

Social factors related to carcass disposal

Culling and destroying of animals for the eradication of infectious disease often produce vehement reactions from the public. Reactions can be expected from the owners of animals which have to be culled, from farmers who are scared that their animals might contract the disease, animal welfare advocates who try to protect the lives of animals, people who abhor pictures of the culling of animals and the transport, burning and burial of carcasses, organisations who fight for environmental protection, culling perceived as a waste of edible food, etc.

In general a stamping out policy is applied to defend the export interests of the animal husbandry industry and is economically motivated. However, in some countries the general public and politicians express their doubts or their opposition against economical reasons as the leading argument to apply this strategy.

Even not all farmers will support the economic necessity of stamping out. For many farmers the rapid regaining of export markets is of no interest. Animals often represent a much more important and differentiated value than pure economics. For an animal breeder his animals represent a professional achievement based on the skills of himself and his ancestors. Many hobby farmers consider their animals as personal companions. In traditional communities animals are kept not for production but for a variety of reasons like a beast of draught or burden, for ceremonial reasons or as a symbol of wealth. For some religions the killing of certain animals is not acceptable. The export related economic argument will fail to convince such owners of the need for culling especially when animals, not showing any symptoms of disease but identified as carriers or serological positive, are included in the culling operation. Loss of certain animals cannot be compensated financially.

Practical considerations

In addition to the risk factors and pre-outbreak activities identified above, several practical issues, often not considered or often accepted as obvious but not attended to, need to be noted. The list is not exhaustive but gives an indication of some of the easily forgotten but essential considerations:
Appendix XXIII (contd)

- **Selection of disposal site** – sufficient top soil to cover the site; water drainage; prevailing wind conditions; easy access to transport; availability of meteorological data; separation from sensitive public sites.

- **Selection of contractors for transport** – availability; can they supply in all the needs; exclusive use of vehicles or would they also be used for other purposes (risk of disease transmission); access to available roads; suitable for the purpose to be used.

- **Logistical preparedness for the appropriate technology** – availability of burning material (wood, old tyres); sufficient manual labour available; sites and availability of disinfection tents for personnel; storage and disposal of protective clothing; housing for personnel to prevent them from going back to home and spread infection; facilities for entry and exit control; availability of electricity for night operations; personal facilities for personnel such as toilets, drinking water; availability of communication – mobile phone reception; protection (e.g. vaccination) of personnel; rendering capacity at rendering plants; additional cold storage and holding facilities at rendering plants and abattoirs; availability of freezing facilities before rendering.

- **Procedures and policies for disposal of other products** – manure, eggs; milk; non-animal products; animal feed.

- **Wildlife** – do they pose a risk in the immediate environment; expertise availability for culling of wildlife; availability of capture teams?

Recommended technologies for the disposal of carcasses

These technologies are presented as a hierarchy based on their reliability for pathogen inactivation.

- **Rendering** - This is a closed system for mechanical and thermal treatment of animal tissues leading to stable, sterilized products, e.g. animal fat and dried animal protein. It grinds the tissue and sterilizes it by heat under pressure. The technology exists in fixed facilities and is in normal usage. It produces an effective inactivation of all pathogens with the exception of prions where infectivity is reduced. A medium sized rendering plant could process 12 tonnes per hour of operations. The availability of the capacity should be determined in advance. Such a plant can operate within environmental standards.

- **Incineration** - This technology can be applied as:
 - Fixed, whole-carcass incineration,
 - Mobile air curtain whole carcass incineration,
 - Municipal incinerators,
 - Co-incineration

Fixed whole carcass incineration occurs in an established facility in which whole carcasses or carcass portions can be completely burned and reduced to ash. Effective inactivation of pathogens is produced. Without additional technology, the exhaust emissions are not subjected to environmental control. However these emissions can be subjected to air scrubbing procedures to meet environmental standards. Fixed facility incineration has been used to dispose of BSE infected carcasses, as well as rendered meat-and-bone meal (MBM) and tallow from cattle carcasses considered to be at risk of BSE. Fixed facility incineration is wholly contained and usually highly controlled. It is typically fuelled by diesel, natural gas, or propane. The exhausts may be fitted with afterburner chambers to completely burn hydrocarbon gases and particulate matter from the main combustion chamber. Whole carcass disposal can be problematic given the batch-feed requirements at most biological waste incineration plants. Many waste incineration facilities refuse whole animals which are 70% water, but prefer waste of 25% water. Therefore, combining rendering and incineration is a promising approach. The resultant ash is less problematic and is considered safe. Although this is a more controlled procedure, there is still a potential fire hazard.
Municipal incinerators are pre-established facilities which are normally used for the burning of household or industrial waste. They may not be currently licensed to burn carcasses.

Co-incineration is a process in which meat and bone meal, carcasses or parts of carcasses are burned in conjunction with other substances such as hazardous waste incineration, clinical waste incineration, and other industrial incinerations such as power plants, cement kilns, blast furnaces and coke ovens. In practice meat and bone meal has been used as a secondary fuel on a large scale in cement kilns and power plants.

Air curtain incineration - air curtain incineration involves a machine that fan-forces a mass of air through a manifold, thereby creating a turbulent environment in which incineration is accelerated up to six times faster than open-air burning. The equipment for this process can be made mobile which can be taken on-site but the potential fire hazard must be considered. Because it can be used on site, there is no requirement for transportation of the animal material. It also produces effective inactivation of pathogens and may actually achieve higher temperatures (1000 °C). Fuelled by diesel engines, high velocity air is blown into either a metal refractory box or burn pit. The materials required are wood (in a wood:carcass ratio of from 1:1 to 2:1), diesel fuel for both the fire and the air-curtain fan, and properly trained personnel. For incineration of 500 adult swine, the requirements are 30 cords of dry wood and 200 gallons of diesel fuel. The product is ash. Since the procedure is not wholly contained, it is subject to variable factors such as human operation, weather, and local community preferences.

Pyre burning - this is an open system of burning carcasses either on-farm or in collective sites fuelled by additional materials of high energy content. This is a well established procedure that can be conducted on site with no requirement for transportation of the input material. However, this process could be contrary to environmental standards for air, water and soil. It takes an extended period of time and has no verification of pathogen inactivation. In fact, there is a possibility of particulate transmission from incomplete combustion. Further, because the process is open to view, there is a negative reaction and lack of acceptance by the public.

Comparison of incineration methods

With all three incineration methods described above, the greater the percentage of animal fat, the more efficiently a carcass will burn. (Swine have a higher fat content than other species). For fixed facility incinerators, the capacity depends on the chamber’s size and can range from 50 kg / hour up to 10 tonnes of poultry carcasses / day. Preprocessed, relatively homogeneous carcass material is more easily handled than large numbers of whole animal carcasses. Depending on the design and on-site management, air-curtain incinerators can burn 4 - 6 tons of carcasses / hour.

- Open-air burning can be relatively inexpensive, but it is not suitable for TSE infected carcasses. It is labour and fuel intensive, and dependent on favourable weather. It has environmental problems and a poor public perception. It is generally accepted that open-air burning pollutes. Although this is dependent on a number of factors. This may be more perception than established fact. Open air burning can also pose significant public perception, psychological, and economic problems

- Fixed facility incineration destroys TSE infected carcasses and is highly biosecure. However it is expensive and difficult to operate and manage from a regulatory perspective. Properly operated fixed facility incineration pose fewer pollution concerns
- **Air-curtain incineration** is mobile, usually environmentally sound, and suitable for combination with debris removal. However it is fuel intensive, logistically challenging, and is not validated to dispose of TSE infected carcasses. Air curtain technology in general has been shown to cause little pollution with fire boxes burning cleaner than trench burners. It has higher combustion efficiencies with less carbon monoxide and particulate matter emissions.

- **Composting** - carcass composting is a natural biological decomposition process that takes place in the presence of oxygen. In the first phase, the temperature of the compost pile increases, organic materials break down into relatively small compounds, soft tissue decomposes, and bones soften partially. In the second phase, the remaining materials, mainly bones, break down fully to a dark brown or black humus containing primarily non-pathogenic bacteria and plant nutrients.

Composting systems require a variety of ingredients including carbon sources, bulking agents and biofilter layers. Carbon sources can include materials such as sawdust, straw, cured cornstalks, poultry litter, ground corn cobs, wheat straw, hay, shavings, paper, leaves, vermiculite, and matured compost. A 50:50 mixture of separated solids from manure and a carbon source can be used as a base material for carcass composting. The finished compost retains nearly 50% of the original carbon source which can be recycled in the compost process. A carbon:nitrogen (C:N) ratio in the range of 25:1 - 40:1 generates enough energy and produces little odour during the composting process. As a general rule the weight of carbon source materials to mortalities is approximately 1:1 for high C:N materials such as sawdust, 2:1 for medium C:N materials such as litter and 4:1 for low CN materials such as straw.

Bulking agents have bigger particle sizes than carbon sources and maintain adequate air spaces (around 25-35% porosity) within that compost pile by preventing packing of materials. Bulking agents include spent horse bedding, wood chips, rotting hay bales, peanut shells, and tree trimmings. The ratio of bulking agents to carcasses should result in a bulk density of the final compost mixture that does not exceed 600 Kg/m³. The weight of the compost mixture in a 19 litre bucket should not be more than 11.4 kg.

A biofilter is a layer of carbon source or bulking material that enhances microbial activity with proper moisture, pH, nutrients, and temperature. It deodorizes gases released at ground level and prevents access by insects and birds thus minimizing transmission of disease agents.

The site selection criteria include a well drained area at 90 cm above the high water table level, at least 90 metres from sensitive water resources, and an adequate slope (1-3%) to allow proper drainage and prevent pooling of water. Runoff should be collected and treated. The location should be downwind of nearby residences. The site should have full accessibility but have minimal interference with other operations and traffic. Storage time of mortalities should be minimized. Co-composting materials should be ground to 2.5 - 5.0 cm and mixed. Compost materials should be lifted and dropped rather than be pushed into place. Compost piles should be covered by a biofilter layer during both phases of composting. The moisture content of the carcass compost pile should be 40-60% (wet basis).
Appendix XXIII (contd)

A temperature probe should be inserted straight down into each quadrant of the pile and internal temperatures should be monitored daily and weekly during both phases of composting. During the first phase, the temperature at the core of the pile should rise to at least 55-60°C within 10 days and remain there for several weeks. A temperature of 65°C at the core, maintained for 1 - 2 days, will reduce pathogenic bacterial activity and weed seed germination. However spore formers such as Bacillus anthracis and other pathogens such as Mycobacterium tuberculosis will survive. Proper aeration is important in maintaining uniform temperature and moisture content throughout the pile. After the first phase of composting, the volume and weight of the pile may be reduced by 50-75%. Following the first phase, the entire compost pile should be mixed, displaced and reconstituted for the secondary phase. If necessary, moisture can be added.

The end of the second phase is marked by an internal temperature of 25-35°C, a reduction in bulk density of approximately 25%, a colour of dark brown to black and the lack of an unpleasant odour. Although heat generated during carcass composting results in some microbial destruction, it is not sufficient to completely sterilize the end product. Pathogenic bacterial activity is reduced when the temperature in the middle of the pile reaches 65 °C within one to two days. An average temperature of 55-60 °C for a day or two reduces pathogenic viruses, bacteria, protozoa (including cysts) and helminth ova to an acceptably low level, but endospores produced by spore-forming bacteria would not be inactivated.

• **Trench burial and mass burial** - this is a system to deposit whole carcasses below ground level and to be covered by soil, with no additional inactivation of pathogens. It is an established procedure which if conducted on site does not require transportation and is used to control the spread of disease. It does however require an environmental assessment because of the potential contamination of groundwater, or of aquifers if leachate is not controlled. Further, it does not inactivate all pathogenic agents.

• **Licensed commercial landfill** - this process involves deposition of carcasses in predetermined and environmentally licensed commercial sites. Because the site has been previously licensed, all environmental impacts such as leachate management, gas management, engineered containment, flooding and aquifers have already been considered. However, the area is open and uncovered for extended periods, there is a potential emission of aerosols, and there is resistance from the public to such an approach.

• **Mounding** - this process is one of mass burial above ground and it has similar considerations to those of mass burial and composting.

• **Fermentation** - this process is a closed system of anaerobic microbiological decompositions which requires prior mechanical and thermal treatment and which results in the production of biogas. This process does not inactivate pathogens, but typically uses non-dried rendered product as the input material.

• **Alkaline hydrolysis** - alkaline hydrolysis uses sodium hydroxide or potassium hydroxide to catalyse the hydrolysis of biological material into a sterile aqueous solution consisting of small peptides, amino acids, sugars, and soaps. Heat is applied (150°C) to accelerate the process. The only solid byproducts are the mineral constituents of the bones and teeth of vertebrates. This residue (2% of the original weight of the carcass) is sterile and easily crushed into a powder. The temperature and alkali conditions of the process destroy the protein coats of viruses and the peptide bonds of prions. Both lipids and nucleic acids are degraded. Significantly large carbohydrate molecules, such as cellulose, although sterilized by the process, are not digestible by alkaline hydrolysis eg paper, string, undigested plant fibres, and wood shavings.
The process is carried out in an insulated steam-jacketed, stainless steel pressure vessel with a sealed lid. The vessel operates at 70 psig to achieve 150°C. The process does not release any emissions into the atmosphere and only causes minor odour production. The end product solution can be released into the sanitary sewer with proper monitoring of pH and temperature according to guidelines. The total process time for alkaline hydrolysis digestion of carcass material is 3-8 hours depending on the disease agent eg bacterial and viral contaminated waste (4 hours), transmissible spongiform encephalopathy waste (6 hours). A mobile trailer unit has a capacity of digesting 4000 pounds of carcasses every 8 hours.

- **Lactic acid fermentation** - lactic acid fermentation is a means to preserve carcasses up to 25 weeks until they can be rendered. Fermentation is an anaerobic process. Carcasses are ground to fine particles, mixed with a fermentable carbohydrate source and a culture inoculant, and added to a fermentation container. For lactic acid fermentation, lactose, glucose, sucrose, whey, whey permeates, and molasses are suitable carbohydrate sources. The carbohydrate source is fermented to lactic acid by *Lactobacillus acidophilus*.

 Under optimum conditions with a temperature of about 35 °C, the pH of fresh carcasses is reduced to less than 4.5 within two days. Some microorganisms are destroyed by the acid pH while the remainder will be destroyed by heat during rendering.

- **Anaerobic digestion** - this process is suited for large-scale operations. It reduces odours and reduces pollution by greenhouse gases due to the combustion of methane. It can eliminate carcasses and at the same time produce energy but may require size reduction and sterilization of carcasses on-site before applying anaerobic technology. Anaerobic digestion transforms waste into fertilizer. Although anaerobic digestion is less expensive with mesophilic organisms at 35°C, the use of thermophilic organisms at 55 °C is preferred because the additional heat destroys some pathogens. It is necessary to use additional heat treatment at the end of the process to fully inactivate pathogens however, even with this, prions are not inactivated. Carcasses have a higher nitrogen content than most other wastes and therefore result in a high ammonia concentration which can inhibit anaerobic digestion. This limits the loading rate for anaerobic digesters that are treating carcass wastes.

- **Non-traditional and novel technologies**
 - **Pre-processing** - this involves on farm pre-processing prior to transportation of carcasses to central facilities because of the complexity and cost (eg rendering or incineration). Preprocessing could include the grinding of carcasses. (A large portable grinder can grind up to 15 tons of animal carcasses per hour). This could then be transported in sealed containers, or be subjected to fermentation or freezing. The primary objectives are to minimize on-site contamination risks and to maximize the number of options for disposal.

 - **Carcass disposal at sea** - disposal in a coastal sea or on a continental plateau cannot occur without the authorization of the coastal State which must make a regulation on the dumping and which must consult with other neighbouring States. International Conventions express a fundamental principle which countries should be obliged to respect even if they are not signatories. These Conventions do not directly prohibit disposal of carcasses at sea, but do define the conditions to be met. It is possible for this disposal if it is technically and scientifically proven that the products to be disposed are not harmful, and if the State has authorised this disposal with a permit.
Appendix XXIII (contd)

- **Bio-refining** - this is a high pressure, high temperature hydrolytic process, conducted in a sealed pressurized vessel. The waste material is treated at 180 °C at 12 bar pressure for 40 minutes, heated by indirect steam application to the biolytic reactor. The process can accommodate whole animal carcasses, MBM, food processing wastes, other compostable material, paper and comparable materials, and cereal straws either alone or in combination. In the dehydration cycle, the steam water is condensed and either used for other purposes or discarded. Each cycle lasts four hours. The capacity of each reactor is 20,000 tonnes of raw material per year. The process inactivates all microbiological agents. It is currently under evaluation for its efficiency in inactivating the prions of transmissible spongiform encephalopathies.

Special considerations for prion diseases

One of the problems in demonstrating the effectiveness of the inactivation of prions is the lack of a simple, rapid and inexpensive test for the presence of the infective agent, especially at low concentrations. The ultimate test is bioassay in a sensitive detector species by an efficient route, but usually this is only relevant in research. Typically this is done using panels of mice bred to be susceptible to particular types of transmissible spongiform encephalopathies (TSEs). However it must be recognized that the mouse to cattle species barrier has been demonstrated to be 500, therefore affecting sensitivity.

Although rendering at 133°C and three bars of pressure for 20 minutes is a defined standard, reductions of infectivity by this technology are in the order of 1:200 – 1:1000. Commercial incinerators have an inactivation rate of one million fold, while burning on pyres has a reduction rate of 90 %. (It should be noted that pyres are not suitable for sheep because of the wool and fat.) Alkaline hydrolysis produces a 3-4 log reduction in infectivity over a three hour period. Landfill and deep burial are suggested to have a reduction in infectivity of 98 – 99.8 % over three years. Based on this information, rendering, incineration, and alkaline hydrolysis are the most reliable technologies at this time. The significance of small amounts of infectivity become evident when you consider that experimentally it has been shown that exposure of sensitive species to as little as 1.0, 0.1 or even 0.01 grams of infected nervous tissue can induce infection.

Given all of the above (except complete burning in closed furnaces), it must be recognized that no process has been demonstrated to be 100 % effective in removing TSE infectivity and there will be some residual levels of infectivity remaining after treatment.

Guidelines for decision-making for the disposal of carcasses

Strategies for carcass disposal require preparation well in advance of an emergency in order to maximize the efficiency of the response. Major issues related to carcass disposal can include the number of animals involved, bio-security concerns over movement of infected and exposed animals, people and equipment, environmental concerns, and the extreme psychological distress and anxiety experienced by producers and emergency workers.

The disposal of large numbers of carcasses will be expensive. As well, fixed and variable costs will vary with the choice of the disposal method. Each method used will result in indirect costs on the environment, local economies, producers, and the livestock industry. Decision makers need to understand the economic impact of various disposal technologies.
A disposal option hierarchy may be incapable of fully capturing and systematizing the relevant dimensions at stake, and decision makers may be forced to consider the least preferred means. It therefore requires a comprehensive understanding of any array of carcass disposal technologies and must reflect a balance between the scientific, economic, and social issues at stake. Timely slaughter, maintenance of security and prevention of further spread of disease, are the essential considerations in terms of disease control.

- **Process for decision-making:**

 The following is an example of a possible process for aiding decision-making by comparing the suitability of various disposal options against factors that are considered important for the specific disposal event in question.

 Step 1 - Define the factors to be considered. Include all relevant factors and allow enough flexibility to permit modifications for different situations and locations. Examples of possible factors include operator safety; community concerns; international acceptance; transport availability; industry standards; cost effectiveness and speed of resolution. These factors can be modified or changed, as is shown in the following example, to best fit the situation of event involved.

 Step 2 - Assess the relative importance of the factors by weighting each on their considered importance to addressing the event in question. The sum of all the weightings, regardless of the number of factors, must total 100.

 Step 3 - Identify and list all disposal options under consideration. Rate each disposal option against each factor and assign a Utility Rating of between 1 to 10 to each comparison. The Utility Rating (U) is a number between 1 and 10 which is allocated according to how well the option achieves the ideal with respect to each factor, (eg 1 = the worst possible fit, and 10 = the best fit).

 Step 4 - For each factor and each disposal option, multiply the Factor Weight (F) x Utility Rating (U) to yield a numeric Balanced Value (V), (eg V = F x U)

 Step 5 - By adding the Balanced Values to a sum for each disposal option, it is possible to compare the suitability of disposal options by numerically ranking the sums of the Balanced Values for each disposal option. The largest sum would suggest that disposal option as the best balanced choice.

 Example - An example of the use of this process follows in Table 1. In this example rendering achieved the highest sum and would be considered as the best balanced choice and the most suitable disposal option for the factors considered.
Table 1: Decision Making Process

<table>
<thead>
<tr>
<th>Method</th>
<th>Rendered</th>
<th>Incineration</th>
<th>Pyre Burning</th>
<th>Composting</th>
<th>Mass Burial</th>
<th>On-Farm Burial</th>
<th>Commercial Landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight</td>
<td>Utility Value</td>
<td>Weight</td>
<td>Utility Value</td>
<td>Weight</td>
<td>Utility Value</td>
<td>Weight Value</td>
</tr>
<tr>
<td>Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator Safety</td>
<td>20</td>
<td>7</td>
<td>140</td>
<td>4</td>
<td>80</td>
<td>8</td>
<td>160</td>
</tr>
<tr>
<td>Speed of Resolution</td>
<td>20</td>
<td>8</td>
<td>160</td>
<td>8</td>
<td>160</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Pathogen Inactivation</td>
<td>15</td>
<td>10</td>
<td>150</td>
<td>10</td>
<td>150</td>
<td>8</td>
<td>120</td>
</tr>
<tr>
<td>Impact on Environment</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>8</td>
<td>80</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>Reaction of the Public</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>7</td>
<td>70</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Transport Availability</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>Acceptable to Industry</td>
<td>5</td>
<td>7</td>
<td>35</td>
<td>7</td>
<td>35</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>Cost</td>
<td>5</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>Risk to Wildlife</td>
<td>5</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>50</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Capacity to Meet Requirements</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>3</td>
<td>15</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>Total Weight to Equal 100 Units</td>
<td>100</td>
<td>sum</td>
<td>785</td>
<td>sum</td>
<td>650</td>
<td>sum</td>
<td>535</td>
</tr>
</tbody>
</table>