I N F E C T I O N W I T H D E C A P O D I R I D E S C E N T V I R U S 1 (D I V 1)

PATHOGEN INFORMATION

1. CAUSATIVE AGENT
 1.1. Pathogen type
 Virus.

 1.2. Disease name and synonyms
 Infection with Decapod iridescent virus 1 (DIV1). Synonyms are infection with shrimp hemocyte iridescent virus (SHIV), infection with *Cherax quadricarinatus* iridovirus (CQIV), ‘white head’ disease or ‘white spot’ disease (of *Macrobrachium rosenbergii*).

 1.3. Pathogen common names and synonyms
 There are two original isolations of Decapod iridescent virus 1 (DIV1): Shrimp haemocyte iridescent virus and *Cherax quadricarinatus* iridovirus.

 1.4. Taxonomic affiliation
 DIV1 was assigned by the International Committee on Taxonomy of Viruses (ICTV) as the only member of the genus *Decapodiridovirus* within the *Iridoviridae* family (ICTV, 2019; Li et al., 2017; Qiu et al., 2016b).

 1.5. Authority
 (first scientific description, reference)
 DIV1 was first described by Xu et al. (2016) (as CQIV) and by Qiu et al. (2017) (as SHIV).

 1.6. Pathogen environment
 (fresh, brackish, marine waters)
 Fresh, brackish, and marine waters.

2. MODES OF TRANSMISSION
 2.1. Routes of transmission
 (horizontal, vertical, indirect)
 Challenge tests with *P. vannamei* and *E. carinicauda* via *per os* and reverse gavage have demonstrated that direct horizontal transmission was an important route of transmission (Qiu et al., 2017; Chen et al., 2019). There is no evidence of vertical transmission; however, samples from hatcheries have been found to be DIV1 positive (Qiu et al., 2018c; Qiu et al., 2019b). The biophysical characteristics of the virus are not well studied so it is difficult to determine the significance of indirect transmission by fomites.

 2.2. Reservoir
 Infected populations of crustaceans, both farmed and wild, are the only established reservoirs of infection. The original source of DIV1 is not known.

 2.3 Risk factors (temperature, salinity, etc.)
 Targeted surveillance in China (People's Rep. of) in 2017-2018 detected DIV1 in shrimp and crayfish at temperatures from 16°C to 32°C. The virus has not been found in samples taken at temperatures above 32°C (Qiu et al., 2018c; Qiu et al., 2019b).

3. HOST RANGE
 3.1. Susceptible species
 Currently known susceptible species of infection with DIV1 include: *Penaeus vannamei*, *M. rosenbergii*, *Exopalaemon carinicauda*, *M. nipponense*, *Procambarus clarkii*, and *C. quadricarinatus* (Xu et al., 2016; Qiu et al., 2017; Qiu et al., 2019a; Chen et al., 2019). Two crab species, *Eriocheir sinensis* and *Pachygrapsus crassipes*, have only been shown to be infected with DIV1 in experimental challenge through unnatural pathways (Pan et al., 2017), and cannot be identified as susceptible species.

 3.2. Affected life stage
 Disease signs and mortality were observed in infected *P. vannamei* from post larvae to sub-adult shrimp in experimental challenges (Qiu et al., 2017). Targeted surveillance in China (People's Rep. of) from 2017-2018 detected the virus in shrimp and crayfish with body lengths in animals of all sizes. The highest detection rate was in animals of body length from 4 cm to 7 cm (Qiu et al., 2018c; Qiu et al., 2019b). Other reports have not addressed different levels of mortality by life stage.

Infection with Decapod iridescent virus 1 (DIV1), Updated May 2020
3.3. Additional comments

None.

4. GEOGRAPHICAL DISTRIBUTION

Infection with DIV1 has been reported in some coastal provinces of China (People's Rep. of) since 2014 (Qiu et al., 2017). Targeted surveillance in China (People’s Rep. of) in 2017 and 2018 detected the virus in 11 of 16 provinces (Qiu et al., 2018c; Qiu et al., 2019b). There have been reports of DIV1 from Thailand at a very low prevalence, but this is yet to be officially confirmed (Ramsden & Smith, 2018). Wild caught P. monodon samples from the Indian Ocean have tested positive for DIV1 (Srisala et al., 2020).

5. CLINICAL SIGNS AND CASE DESCRIPTION

5.1. Host tissues and infected organs

DIV1 infects haematopoietic tissues, haemocytes and lymphoid organs (Qiu et al., 2017). Low level infection may also exist in E. carinicauda (Chen et al., 2019; Qiu et al., 2019a).

5.2. Gross observations and macroscopic lesions

Body slightly reddish, hepatopancreatic atrophy with colour fading, empty stomach and guts. In M. rosenbergii a white triangular area under the carapace at the base of rostrum can be observed (Qiu et al., 2017; Chen et al., 2019; Qiu et al., 2019a).

5.3. Microscopic lesions and tissue abnormality

Histopathological examination showed the existence of dark eosinophilic inclusions mixed or surrounded by basophilic staining, and karyopyknosis in the haematopoietic tissues, epithelium, lymphoid organs, haemocytes of gills, pereiopods, and hepatopancreatic sinus (Qiu et al., 2017; Qiu et al., 2019a; Chen et al., 2019).

5.4. OIE disease listing status

Infection with DIV1 has been proposed for listing in the OIE Aquatic Animal Health Code (OIE, 2016). The disease meets the OIE definition of an ‘emerging disease’ and, as such, Members must report it in accordance with Article 1.1.4 of the Aquatic Code. Infection with DIV1 is listed in the OIE/NACA quarterly aquatic animal disease reporting programme (https://enaca.org).

6. SOCIAL AND ECONOMIC SIGNIFICANCE

Crustacean aquaculture is economically important worldwide, particularly for some developing countries. The global aquaculture production of crustaceans is estimated at 7.9 million tonnes with a current value of U.S.$57.1 billion (FAO, 2018). DIV1 has been shown to cause significant mortalities (up to 100%) and has resulted in serious economic losses to aquaculture (Qiu et al., 2018c; Qiu et al., 2019b).

7. ZOONOTIC IMPORTANCE

None

8. DIAGNOSTIC METHODS

In situ hybridization (ISH) (Qiu et al., 2017), PCR (Xu et al., 2016), nested-PCR (Qiu et al., 2017), two TaqMan probe based real-time PCR tests (Qiu et al., 2018a; Qiu et al., 2020), and in situ DIG-labelling-loop-mediated DNA Amplification (ISDL) (Chen et al., 2019) have been established. The nested PCR and real-time PCR methods are more sensitive and have been validated (Qiu et al., 2017; Qiu et al., 2018a).

8.1. Definition of suspect cases

Presence of mortalities associated with gross signs and histopathology of infection with DIV1.

8.2. Presumptive test methods

Samples are tested as positive results with one of the following test: in situ hybridization, PCR and sequencing, nested-PCR (followed by sequencing), TaqMan probe based real-time PCR or ISDL.

8.3. Confirmatory test methods

Infection with DIV1 is considered to be confirmed if two or more of the following criteria are met: gross clinical signs and histopathology consistent with infection with DIV1, ISH positive result in target tissues, PCR (followed by sequencing), nested-PCR (followed by sequencing), and TaqMan probe based real-time PCR with positive results for DIV1.

9. CONTROL METHODS

Enhanced biosecurity is the key strategy for control of infection with DIV1, including surveillance plans for farms, quarantine, and testing for DIV1 in broodstock and postlarvae.
Generic biosecurity measures to minimise fomite spread via equipment, vehicles or staff (i.e. cleaning and disinfection) should also be implemented. (Qiu et al., 2018c). Restrictions on the movement of live crustaceans and removal of moribund or dead individuals from affected farms will limit the spread of the disease. Crustacean polyclanches should be avoided. Live or frozen raw decapods or polychaetes should not be used as feed to broodstock (Qiu et al., 2018c; Qiu et al., 2019b).

10. TRANSMISSION RISK

As DIV1 has been shown to be horizontally transmitted through ingestion of infected tissue, disease transmission is likely through live crustaceans and frozen product. There is limited information about biophysical properties of the virus. However, it may be assumed that it will share properties of other large particle DNA viruses in crustaceans, such as white spot syndrome virus. Evidence suggests that different tissues, including haemolymph, antennal flagellum, rostrum, gills, hepatopancreas, pleopods, muscle and uropods, may contain high concentrations of DIV1. Consequently, solid, and liquid waste is likely to be contaminated (Qiu et al., 2018a; Qiu et al., 2019a).

11. ADDITIONAL USEFUL INFORMATION

- The 15th Meeting of the Asia Regional Advisory Group on Aquatic Animal Health of Network of Aquaculture Centres in Asia-Pacific (NACA) has raised awareness on Cherax quadricarinatus iridovirus and added iridovirus in crayfish non-OIE listed diseases in its Quarterly Aquaculture Animal Disease Report (QAAD) since July 2016. https://enaca.org/?id=8

- China (People’s Rep. of) has undertaken annual targeted surveillance for infection with DIV1 since 2017. A brief report of the annual surveillance was reported in the annual Report for Aquatic Animal Health in China (Edited by the Fisheries and Fishery Administration Bureau under Ministry of Agriculture and Rural Affairs and the National Fisheries Technology Extension Center, published by China Agriculture Press, Beijing 2018 and 2019). Details of the annual targeted surveillance data analysis were published in the annual books Analysis of Important Diseases of Aquatic Animals in China in 2017 and 2018 (Qiu et al., 2018c, 2019b). Some aquatic animal emerging diseases, including infection with DIV1 have been under control with the highest biosecurity measures in China (People’s Rep. of) since September 2018.

REFERENCES

- One New Genus with One New Species in the Subfamily Betairidovirinae. Available online: https://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/animal-dna-viruses-and-retroviruses/8051

