editorial
Improving wildlife surveillance for its protection while protecting us from the diseases it transmits .. 01

forum
A new definition for the Terrestrial Animal Health Code: 'animal welfare' ... 04

OIE news
OIE-FAO Guide to good farming practices for animal production food safety .. 05

news from colleagues
epidemiology & animal disease control programmes ... 34
zoonoses .. 44
activities of reference laboratories & collaborating centres ... 50

international news
book review .. 52
special events .. 55
agenda .. 66

questions and answers .. 71
Wildlife diseases are a growing concern worldwide. In addition to threatening populations of wild animals themselves, wildlife disease can affect domestic animals and human health. This is particularly true nowadays, when emerging diseases shared by both animals and humans increasingly come to our attention in the new context of globalisation of movement of commodities and climate change. Furthermore, the legal and illegal trade in wildlife, a market that is estimated to be worth a minimum of 6 billion US dollars, is growing rapidly and also contributes to the global dissemination of new pathogens and emerging diseases. Therefore, a better understanding of diseases present in wildlife and their effects on wildlife, domestic animals and humans is of key importance to develop control measures.

Zoonoses – diseases of animals that can infect humans – are a growing concern. Approximately 60% of existing human pathogens and over 75% of those that have appeared during the past two decades can be traced back to animals. Many of them have a proven link with wildlife. Furthermore, new factors such as increasingly mobile human populations, climate change, the movement of animals and animal products via international trade, deforestation, urbanisation, and new social habits such as the increasingly common adoption of exotic pets, all favour the unprecedented multiplication of contacts between wildlife, domestic animals and humans.

The role played by wildlife in the world epidemiological situation is widely demonstrated. We also know that animals in the wild are both targets of and a reservoir for pathogens capable of infecting domestic animals and humans. Infections with tuberculosis, Nipah virus or Ebola virus, to name but a few, regularly afflict domestic animals and humans alike, and each of these events sounds a shrill alarm on the need for better monitoring of wild animal health and the source of wildlife diseases. For instance, large primates have on occasions seen their wild populations decline due to diseases of human origin. More recently, the avian influenza global crisis has clearly demonstrated how much still remains to be understood regarding the behaviour of the H5N1 strain in wild birds as well as their role in the spread of the disease.

So-called invasive wild and domestic animal species or non-indigenous plants threaten many ecosystems, for example by introducing alien species into some ecological niches, with growing negative environmental consequences worldwide. When natural ecosystems are threatened by invasive wild animal populations or by domestic animal populations that have become wild or semi-wild, it is important to control the demography of such populations which can also serve as highly effective disease reservoirs for numerous pathogens. In this respect, the OIE is seeking to develop standards for the humane control of these undesirable categories of animal populations where necessary.

In parallel with the increased human population and the huge rise in world demand for animal protein – which is bound to grow in the coming years –, significant increases in domestic animal populations with the attendant requirement for grazing land have caused pastoral activities to impinge on areas inhabited by wild animals in nearly all parts of the world. This creates a new threat to the survival of wildlife in a decreasing habitat as well as challenging domestic animals with new disease agents.

The management and control of disease in wildlife present many challenges. Symptoms and signs of disease in wildlife are not as readily observed as in domestic animals, and specimens for laboratory analysis are more difficult to collect, thus making early detection of and response to disease outbreaks slow to implement. All these factors combine to make surveillance of wildlife diseases
worldwide more problematic but, they certainly do not lessen the importance of surveillance programmes.

The OIE established a permanent Working Group on Wildlife Diseases in 1993. The Working Group comprises six of the world’s leading scientific experts in their subject areas coming from all regions of the world. It collects analyses and disseminates information on almost 40 diseases affecting wildlife, whether in the wild or in captivity. The Working Group has prepared OIE recommendations and overseen numerous scientific publications on the surveillance and control of the most important wildlife diseases.

Surveillance of wildlife diseases must be considered equally as important as surveillance and control of diseases in domestic animals. Wild animals often act as sentinels for animal diseases, thus allowing an effective management and control of these diseases in domestic animals. Therefore, the OIE strongly encourages its 172 Members to put efficient monitoring systems in place and notify outbreaks of diseases in wild, feral or partially domesticated animals, as is the practice for all other animals. Today, thanks to the OIE’s world-wide animal health notification system (WAHIS), the reporting of animal diseases in the world, including those of wildlife listed by the OIE, has dramatically improved and has brought an unprecedented level of transparency.

All national Delegates of OIE Members have been required to nominate a national ‘focal point’, an official who, under the Delegate’s authority, will inform the OIE of the presence of notifiable diseases affecting wildlife and will submit comments on proposed new OIE standards in the field of wildlife diseases.

Furthermore, the OIE has created the concept of compartmentalisation in order to continue to protect the status of freedom, in respect of certain animal diseases, of domestic animal populations living in an environment that is affected by these specific diseases. In some cases, the concept of compartmentalisation makes it possible to raise domestic animals in areas where wildlife may be infected (e.g., by Newcastle disease in wild birds or swine fever in wild boar) and still take part in international trade. At the same time, it can protect wild animals from some domestic animal diseases, thanks to the biosecurity measures implemented within the compartments.

There is clearly a duty to manage wildlife diseases. We must maintain biological diversity, improve our knowledge of the health status of all animal populations and prevent species at risk from disappearing, while protecting human and domestic animal populations from the introduction of diseases. This relies mainly on the Veterinary Services. A technically competent, adequately resourced Veterinary Service is needed, working with other regulatory authorities and with non governmental organisations (NGOs) in a cooperative constructive manner. This also requires political will and the dedication of the necessary resources for the implementation of programmes and scientific research. Furthermore, the efficiency of Veterinary Services in this field will be increased by various mechanisms of alliances and collaboration with agencies in charge of wildlife protection and hunting policies, and with NGOs working on the same topics. Alliances with hunters’ organisations are very useful and important for the surveillance and early detection of wildlife diseases. These alliances are also useful for managing undesirable animal populations.

There have already been notable successes. Some diseases, such as rabies, have been controlled or eliminated in many areas thanks to oral vaccination programmes – in foxes, for example –, thereby also protecting domestic animals and human health. Rinderpest is on the verge of being eliminated from domestic and wild animals. Trichinellosis, while still significant in wild carnivores, has been controlled in domestic pigs in most of the world, considerably reducing the incidence of the disease in humans and partially in wildlife.

Wildlife disease problems will not solve themselves. While it is important to monitor the presence of pathogens in
wildlife, it is not, and will not be, in wildlife that interventions are mainly directed. Control and eradication measures implemented under the authority of the Veterinary Services must primarily focus on domestic animal populations and this will contribute to the protection of wildlife.

The OIE calls on the international community as a whole to support national Veterinary Services in order to strengthen their surveillance capacities for diseases in wildlife, particularly in order to monitor closely what has the potential to become a threat to domestic animals and even humans. The OIE will also continue to speak out in favour of safeguarding natural ecosystems together with the relevant wild animal species that have survived the various planetary upheavals, because they are global public good.

For all the above reasons, the surveillance of wild animal diseases, the sanitary control of international trade of domestic and wild animals and animal products using OIE standards recognised by the World Trade Organization, as well as the control of inappropriate transfer of invasive species and undesirable animals or plants, are essential actions.

Bernard Vallat
Director General, OIE
A new definition for the
Terrestrial Animal Health Code: ‘animal welfare’

The OIE is working actively in the development and refinement of animal welfare standards and it has come to our attention that there is a need for clarity in defining the terminology used.

After the discussion that started at the 75th General Session of the International Committee (2007) on the correct translation of the term ‘animal welfare’, the Terrestrial Animal Health Standards Commission developed a definition of ‘animal welfare’ in cooperation with the OIE Working Group on Animal Welfare in September 2007. The Terrestrial Animal Health Standards Commission, after receiving and reviewing comments from OIE Members, proposed an expanded definition for ‘animal welfare’ in consultation with the Working Group. In the light of further comments from the OIE Regional Commissions, the Administrative Commission proposed an amended version of the definition, for submission to the International Committee at the 76th General Session in May 2008. The definition adopted by the International Committee for inclusion in the Terrestrial Animal Health Code is as follows:

Animal welfare

‘means how an animal is coping with the conditions in which it lives. An animal is in a good state of welfare if (as indicated by scientific evidence) it is healthy, comfortable, well nourished, safe, able to express innate behaviour, and if it is not suffering from unpleasant states such as pain, fear, and distress. Good animal welfare requires disease prevention and veterinary treatment, appropriate shelter, management, nutrition, humane handling and humane slaughter/killing. Animal welfare refers to the state of the animal; the treatment that an animal receives is covered by other terms such as animal care, animal husbandry, and humane treatment.’

This text will be found in Chapter 1.1.1. and (as an introductory paragraph) in Appendix 3.7.1. of the next Terrestrial Animal Health Code.
Introduction

Food safety is universally recognised as a public health priority. It requires a holistic approach, from production to consumption.

This Guide is intended to help Competent Authorities to assist stakeholders, including farmers, to fully assume their responsibilities at the animal production stage of the food chain to produce safe food. Good farming practices should also address socioeconomic, animal health and environmental issues in a coherent manner.

The recommendations in the Guide complement the responsibilities of the Competent Authorities at the farm level, in particular those of the Veterinary Services, and are intended to assist in developing on-farm quality assurance systems for animal product food safety. This document complements existing OIE, FAO and Codex Alimentarius Commission (Codex) texts aimed at addressing animal health and welfare, socioeconomic and environmental issues related to farming practices. The bibliography lists the most relevant documents and publications.

To assist the Competent Authorities an indication is given at the end of the Guide on the steps to be taken to implement the recommendations.

Hazards

Many aspects of animal production are at risk from biological, chemical (including radionuclide) and physical agents. These agents may enter food-producing animals or animal products through a wide variety of exposure points in the food chain, with consequent potential risks for consumers.

A table listing the main agents (hazards) that may have an adverse effect on a farming system and indicating the corresponding control points is presented at Appendix 1. Hazards are categorised as biohazards, chemical hazards and physical hazards.

It would not be possible to list all the possible hazards here. The aim of the Guide is rather to describe, in very broad terms, a set of generic good farming practices intended to minimise hazards.

Recommended good practices to address the listed hazards are considered under the following headings:

1. General farm management
2. Animal health management
3. Veterinary medicines and biologicals
4. Animal feeding and watering
5. Environment and infrastructure
6. Animal and product handling
Recommended Good Practices

1 General farm management

A number of common themes run through all levels of farm management and recur often in the principles elaborated below. They are:

1.1 Legal obligations

Farmers should be aware of, and comply with, all legal obligations relevant to livestock production, e.g. disease reporting, record keeping, animal identification and carcass disposal.

1.2 Record keeping

When a problem arises in an enterprise, be it a disease, a chemical hazard issue or a physical safety matter, record keeping is central to any effort to trace the source of the problem and eliminate it. Hence, as far as is practicable, farmers should keep records of:

- All animal populations on the farm (groups or individuals as relevant).
- All animal arrivals, including their identification marks or devices, origin and date of arrival, to ensure that movements of incoming animals are traceable to their source.
- Movements of animals around the enterprise.
- Changes to feeding or health regimes, and any other management changes that may occur.
- Origin and use of all feeds, drugs, disinfectants, herbicides and other consumable items used on the farm.
- Known diseases/infections, diseased/infected animals and mortalities, as far as possible giving details such as dates, diagnoses (where known), animals affected, treatments and results.

1.3 Animal identification

Animal identification and the ability to trace animals have become important tools to ensure food safety and improve management. Identification of animals may be on an individual or group basis, and connections between properties as a result of animal movements should be able to be deduced from good record keeping and animal identification.

1.4 Hygiene and disease prevention

Measures aimed at preserving cleanliness, preventing pathogen build-up and breaking possible pathways of transmission are essential in the management of any modern farming enterprise, regardless of the species or the farming system.

While the use of animal manure, animal slurry and human sewage sludge for fertiliser purposes is becoming increasingly common, enabling higher crop yields as well as sensible waste management, it may facilitate the transmission of food-safety-related diseases within or between herds or directly to humans. Therefore systems for animal or human waste usage for fertiliser purposes should take into consideration relevant treatment methods as well as specific holding times before animals are allowed onto treated pastures. Suggested holding times are directly related to climatic conditions in the region in question (e.g. die-off of pathogens is faster at higher temperatures). As a general rule, neither animal nor human waste should be used on plants intended for direct human consumption unless it has been appropriately treated.

Precautions should aim at:

- Reducing contact between healthy animals and potentially infected animals.
- Maintaining the hygiene and safety of all facilities.
- Ensuring the health of all workers on the farm and the implementation of hygienic working procedures.
- Taking all appropriate measures to prevent contamination by vehicles entering and traversing the property.
- Minimising contact between livestock and professional or other visitors, and taking all hygienic measures necessary to reduce the possible introduction of pathogens and contaminants.
- Ensuring overall health of livestock through good nutrition and reducing stress.
- Maintaining an appropriate population density for the species and age group in question, either by following locally enforceable measures or by obtaining appropriate advice from recognised experts.
Keeping records of animal populations in facilities/on farms.

1.5 Training
Husbandry measures and techniques are ever-changing. Competent Authorities are encouraged to assess training needs amongst stakeholders and promote necessary training. This would contribute to the commitment to, and effective execution of, all practices described in this Guide.

Farmers and farm managers should:
- Actively seek and use relevant training opportunities for themselves and their workers.
- Be aware of any training courses that may be compulsory in their countries and regions.
- Keep records of all training undergone.

2 Animal health management

2.1 Addressing biohazards
As a general principle, closed farming systems and all-in all-out systems are recommended from a food safety and biosecurity point of view.

Owners or managers of livestock should:
- Establish a working relationship with a veterinarian to ensure that animal health and welfare and disease notification issues are addressed.
- Seek veterinary assistance to immediately investigate any suspicion of serious disease.
- Comply with regulations concerning restrictions on animal movements.
- Separate diseased from healthy animals such that transmission of infection does not occur and, where necessary, cull diseased animals.
- Practice breeding and selection such that animals well suited to local conditions are raised and detailed breeding records are kept.
- Acquire animals (including breeding stock) only from sources with a known, safe health status, where possible with supporting health certificates from veterinarians.
- Source fresh or frozen semen, ova and embryos from sources with a known, safe health status, accredited by the Competent Authority of the country of origin, with appropriate health certification.
- Keep records of all breeding stock, semen or embryos used on the premises, the animals upon which they were used, the breeding dates and outcomes.
- Keep newly arrived animals separate from resident stock for an appropriate period to monitor them for diseases and infestations in order to prevent transmission of such conditions.
- Ensure that, wherever necessary, newly arrived animals are given time to adapt to new feeding regimes, are not overcrowded, and that their health is regularly monitored.
- Ensure that equipment and instruments used in animal husbandry are suitably cleaned and disinfected between each use.
- Effectively remove or dispose of dead and fallen stock where possible so that other animals cannot come into contact with carcasses and that carcasses do not contaminate the pasture or drinking water, and keep records of all such disposals.

2.2 Addressing physical hazards
Owners or managers of livestock should apply animal welfare practices in accordance with regulatory requirements, and in particular:
- Ensure that people working with animals are properly experienced and trained for the tasks they should perform.
- Ensure that facilities and equipment are properly designed and maintained to prevent physical injury.
- Ensure that animals are handled and transported appropriately.

3 Veterinary medicines and biologicals

3.1 Common measures
Owners or managers of livestock should:
- Be aware of and comply with restrictions on medicines or biologicals for use in livestock.
- Use veterinary medicines and biologicals strictly in accordance with the manufacturer’s instructions or veterinary prescription.
• Use antimicrobials only in accordance with regulatory requirements and other veterinary and public health guidance.
• Keep detailed records of the origin and use of all medicines and biologicals, including batch numbers, dates of administration, doses, individuals or groups treated and withdrawal times. Treated individuals or groups should be clearly identified.
• Maintain required storage conditions for veterinary medicines and biologicals.
• Ensure that all treatments or procedures are carried out using instruments that are appropriate and correctly calibrated for the administration of veterinary medicines and biologicals. Dispose of used instruments (including needles) in a biosecure manner.
• Keep all treated animals on the farm until the relevant withdrawal times have expired (unless the animals should leave the farm for veterinary treatment) and ensure that products from these animals are not used for human consumption until withdrawal periods have elapsed.
• Ensure that all handling or treatment facilities are safe and appropriate to the species in question, facilitate correct and calm handling and restraint, and that their construction is such that the likelihood of injury is minimised.

4 Animal feeding and watering

4.1 Common measures
Owners or managers of livestock should:
• Acquire feed from suppliers who follow recognised good manufacturing practices.
• Manage the feed chain (transport, storage, and feeding) in such a way as to protect feed from contamination (biological, chemical, and physical hazards) and minimise deterioration. Feeds should be used as soon as possible and, if applicable, in accordance with label instructions.
• Ensure that only water of known and acceptable biological and mineralogical quality (i.e. fit for animal consumption) is used for watering stock.
• Keep records of all feeds and dates of acquisition and feeding; where possible the animals/groups of animals fed should be clearly recorded. Self-mixed feeds should have their ingredients and mixes recorded, as well as dates of feeding and animals fed as specified above.
• Where on-farm manufacture of feeds is practised, follow procedures designed to minimise contamination and prevent the inclusion of undesirable feed components. Where necessary, expert assistance should be sought.
• Ensure that nutritional levels are adequate to promote animal health, growth and production.
• Ensure that changes to feeding regimes are, wherever possible, gradual, and that the regimes are safe and follow acceptable feeding practices.
• Prevent animal access to places where feeds are stored and to places where hazardous chemicals are stored.

4.2 Addressing biohazards
Owners or managers of livestock should:
• Ensure that antibiotics are not used in feed for growth promoting purposes in the absence of any public health safety assessment and recommendations.
• Ensure that ruminant protein is not fed to ruminants.
• Where appropriate, manage pastures by stocking rate and rotation to maintain healthy and productive livestock and reduce parasite burdens. Keep records of pasture rotation and other on-farm animal movements between pens, sheds etc.
• Regularly inspect and, when necessary, clean and disinfect feeding and watering facilities such as drinkers and troughs.
• Ensure that effluents are managed in such a way that drinking water sources are not contaminated.

4.3 Addressing chemical hazards
Owners or managers of livestock should:
• Use herbicides and pesticides judiciously and according to the manufacturer’s instructions and applicable legislation such that animal exposure to these chemicals is minimised. Records of usage, including the date and location of application, should be kept.
• Ensure that when feed additives are used, that manufacturer’s instructions as to dosage levels and withdrawal periods are followed, and that records of usage of such feed additives are kept.

4.4 Addressing physical hazards
Owners or managers of livestock should:
• Ensure that animals are not kept in sheds, pens or pastures where they are likely to ingest foreign objects and that all facilities are kept clean and free from metal objects, pieces of wire, plastic bags, etc.
5 Environment and infrastructure

5.1 Common measures
Owners or managers of livestock should:
- Ensure that where animals are confined, the housing or pens are constructed such that the basic needs of the animals are fulfilled especially with regard to ventilation, drainage, and manure removal. Walking surfaces should be level, non-slip, and all surfaces should ideally be washable.
- Locate farms in areas free from industrial and other pollution and sources of contamination and infection.

5.2 Addressing biohazards
Owners or managers of livestock should:
- Ensure that farm layout and building construction provide for adequate separation of animals by production group as necessary.
- Ensure that buildings and perimeter fences are constructed so that contact with other livestock and wild animals is minimised.
- Maintain adequate separation between clean and contaminated materials (e.g. feed and manure).
- Ensure that systems that use animal or human waste for fertiliser purposes take into consideration relevant treatment methods as well as specific holding times before animals are allowed onto treated pastures.
- Ensure that effluent is properly disposed of and that facilities where animals are kept are an appropriate distance from any disposal points.
- Ensure that any bedding or litter is regularly renewed and that used bedding or litter is disposed of safely.
- Apply appropriate pest and vermin control measures, which may include the use of barriers such as nets or fencing, or the use of pest/vermin population control measures.

5.3 Addressing chemical hazards
Owners or managers of livestock should:
- Use chemical disinfectants and cleansers strictly in accordance with the manufacturer’s instructions, ensuring that disinfected or cleaned surfaces and facilities are properly rinsed if necessary.
- Seek professional advice with regard to the use of disinfectants or cleansers.

5.4 Addressing physical hazards
Owners or managers of livestock should:
- Manage pastures such that livestock are not exposed to dangerous and impassable areas.

6 Animal and product handling

6.1 Addressing biohazards
Owners or managers of livestock should:
- Ensure that all animals destined for slaughter are clean, healthy and fit to travel and have not had recent contact with diseased stock or infectious material.
- Apply short duration feeding regimes aimed at reducing the shedding of harmful bacteria by animals destined for slaughter.
- Ensure that contamination of animal products from animal and environmental sources during primary production and storage are minimised.
- Ensure that storage conditions maintain the quality of the products.
- Keep records of animals and animal products leaving the farm as well as their destination and date of dispatch.

6.2 Addressing chemical hazards
Owners or managers of livestock should:
- Ensure full compliance with existing legislation such that applicable maximum residue levels are not exceeded.
- Ensure that no animal destined for slaughter has been subjected to treatment for which the withdrawal period has not elapsed.

6.3 Addressing physical hazards
Owners or managers of livestock should:
- Ensure that mustering or catching and handling of animals prior to loading is carried out in a safe and humane manner.
- Ensure that loading facilities are appropriately constructed.
- Take the necessary care during animal loading so as to minimise injury.
- Handle products in such a way as to prevent damage.
Implementation

It is desirable that the Competent Authorities and relevant stakeholders agree on acceptable farm management measures (which may include codes of practice) for the various livestock industries in their countries, based on the principles elaborated in this Guide.

Ideally, farmers should implement all measures recommended in the Guide. In order to achieve this, these measures need to be adapted to specific production and farming systems from the subsistence smallholder systems found in many developing countries to large industrial farm units.

Diagram 1 proposes a methodology for such implementation.

The OIE and FAO encourage member countries to develop their own measures or codes of practice based on this Guide. The Competent Authorities should consult with the appropriate stakeholders to establish the cost effectiveness and the applicability of the measures recommended in this Guide. The Competent Authorities should take account of the particular health, socioeconomic and cultural situations in their countries as they proceed to apply this Guide.

Some measures can be adopted ‘as is’, while others will have to be adapted and their wording modified before being validated and integrated into a specific code of practice. Non-relevant measures might even be discarded. Some complementary measures might have to be added to specific codes of practice in order to adequately address specific hazards.

Countries can decide what level of priority to assign to each of the measures in this Guide when developing their own frameworks. Measures with the highest priority should be the minimum requirement for farmers, while measures of lower priority could be applied as circumstances dictate. On-farm quality assurance should be supported by policies and programmes, including raising awareness and training of stakeholders. These activities are deemed essential to obtaining stakeholder commitment to the quality assurance process.

The Competent Authorities in consultation with stakeholders should develop mechanisms to monitor the implementation of this Guide.

Diagram 1: Implementation methodology for specific production and farming systems

<table>
<thead>
<tr>
<th>Guide to good farming practices</th>
<th>Application in specific production systems by competent authorities and/or stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazards</td>
<td>Applicable to system?</td>
</tr>
<tr>
<td>Control points</td>
<td>Yes</td>
</tr>
<tr>
<td>Measures</td>
<td>Validated measure</td>
</tr>
<tr>
<td>Predefined</td>
<td>Yes with rewording</td>
</tr>
<tr>
<td>Predefined</td>
<td>Validated with modification</td>
</tr>
<tr>
<td>Predefined</td>
<td>No</td>
</tr>
<tr>
<td>Predefined</td>
<td>Missing measure?</td>
</tr>
<tr>
<td>Predefined</td>
<td></td>
</tr>
</tbody>
</table>

Priority levels:
1- Critical measure
2- Highly advisable measure
3- Recommended measure
Appendix 1. Hazards and corresponding control points

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Control points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biohazards</td>
<td>• Sources of animals (horizontal and vertical transmission)</td>
</tr>
<tr>
<td>Introduction of pathogens</td>
<td>• Sourcing of breeding stock</td>
</tr>
<tr>
<td>contaminations</td>
<td>• Breeding procedures</td>
</tr>
<tr>
<td></td>
<td>• Semen and embryo quality</td>
</tr>
<tr>
<td>Waterborne infections and infestations</td>
<td>• Bedding</td>
</tr>
<tr>
<td></td>
<td>• Feed and water</td>
</tr>
<tr>
<td></td>
<td>• Records of acquisitions and animal movements</td>
</tr>
<tr>
<td></td>
<td>• Health and hygiene of visitors and personnel</td>
</tr>
<tr>
<td></td>
<td>• Contact with other animals (including wildlife/rodents/insects, etc.)</td>
</tr>
<tr>
<td></td>
<td>• Vehicles/clothing/instruments/equipment</td>
</tr>
<tr>
<td></td>
<td>• Infected/contaminated carcasses, tissues or secretions</td>
</tr>
<tr>
<td></td>
<td>• Bedding management</td>
</tr>
<tr>
<td></td>
<td>• Insect or pest vectors</td>
</tr>
<tr>
<td>Transmission of pathogens and contaminants</td>
<td>• Farm location</td>
</tr>
<tr>
<td></td>
<td>• Animal housing and population density</td>
</tr>
<tr>
<td></td>
<td>• Disease-diagnosis (horizontal and vertical transmission)</td>
</tr>
<tr>
<td></td>
<td>• Health and hygiene of visitors and personnel</td>
</tr>
<tr>
<td></td>
<td>• Vehicles/clothing/instruments/equipment</td>
</tr>
<tr>
<td></td>
<td>• Infected/contaminated carcasses, tissues or secretions</td>
</tr>
<tr>
<td></td>
<td>• Bedding management</td>
</tr>
<tr>
<td></td>
<td>• Insect or pest vectors</td>
</tr>
<tr>
<td>Microbial and parasitic infections on pastures and paddocks</td>
<td>• Pasture management</td>
</tr>
<tr>
<td></td>
<td>• Microbial/parasite diagnosis</td>
</tr>
<tr>
<td>Microbial load on skins</td>
<td>• Environment of animals</td>
</tr>
<tr>
<td></td>
<td>• Waste management</td>
</tr>
<tr>
<td></td>
<td>• Bedding management</td>
</tr>
<tr>
<td></td>
<td>• Population density</td>
</tr>
<tr>
<td>Ingestion of dangerous/harmful objects</td>
<td>• Treatment of animals</td>
</tr>
<tr>
<td></td>
<td>• Farm location</td>
</tr>
<tr>
<td></td>
<td>• Animal movement</td>
</tr>
<tr>
<td></td>
<td>• Use of agricultural chemicals</td>
</tr>
<tr>
<td></td>
<td>• Feed and water quality</td>
</tr>
<tr>
<td></td>
<td>• Equipment and building materials</td>
</tr>
<tr>
<td></td>
<td>• Hygiene practices</td>
</tr>
<tr>
<td></td>
<td>• Feed, pasture and water quality</td>
</tr>
<tr>
<td></td>
<td>• Farm location</td>
</tr>
<tr>
<td></td>
<td>• Animal movements</td>
</tr>
<tr>
<td></td>
<td>• Feed production, storage and transport</td>
</tr>
<tr>
<td></td>
<td>• Effluent management</td>
</tr>
<tr>
<td></td>
<td>• Watering equipment</td>
</tr>
<tr>
<td></td>
<td>• Treatment of animals</td>
</tr>
<tr>
<td></td>
<td>• Sales and prescription control</td>
</tr>
<tr>
<td></td>
<td>• Record keeping</td>
</tr>
<tr>
<td></td>
<td>• Residue control</td>
</tr>
<tr>
<td></td>
<td>• Quality of feed and water</td>
</tr>
<tr>
<td></td>
<td>• Farm location</td>
</tr>
<tr>
<td></td>
<td>• Sources of feeds and water</td>
</tr>
<tr>
<td>Airborne infections and contaminations</td>
<td>• Farm location</td>
</tr>
<tr>
<td></td>
<td>• Animal housing and ventilation</td>
</tr>
<tr>
<td></td>
<td>• Population density</td>
</tr>
<tr>
<td></td>
<td>• Animal management</td>
</tr>
<tr>
<td></td>
<td>• Diagnosis</td>
</tr>
<tr>
<td></td>
<td>• Population density</td>
</tr>
<tr>
<td></td>
<td>• Animal management (incl. transport)</td>
</tr>
<tr>
<td></td>
<td>• Diagnosis</td>
</tr>
<tr>
<td></td>
<td>• Population density</td>
</tr>
<tr>
<td></td>
<td>• Ingestion of dangerous/harmful objects</td>
</tr>
<tr>
<td></td>
<td>• Farm location</td>
</tr>
<tr>
<td></td>
<td>• Source of feeds and water</td>
</tr>
<tr>
<td></td>
<td>• Record keeping</td>
</tr>
<tr>
<td></td>
<td>• Construction and equipment</td>
</tr>
<tr>
<td></td>
<td>• Infrastructure</td>
</tr>
<tr>
<td></td>
<td>• Construction and equipment</td>
</tr>
<tr>
<td></td>
<td>• Infrastructure</td>
</tr>
<tr>
<td></td>
<td>• Use of agricultural chemicals</td>
</tr>
<tr>
<td></td>
<td>• Feed and water quality</td>
</tr>
<tr>
<td></td>
<td>• Farm location</td>
</tr>
<tr>
<td></td>
<td>• Animal movements</td>
</tr>
<tr>
<td></td>
<td>• Feed production, storage and transport</td>
</tr>
<tr>
<td></td>
<td>• Effluent management</td>
</tr>
<tr>
<td></td>
<td>• Watering equipment</td>
</tr>
<tr>
<td></td>
<td>• Treatment of animals</td>
</tr>
<tr>
<td></td>
<td>• Sales and prescription control</td>
</tr>
<tr>
<td></td>
<td>• Record keeping</td>
</tr>
<tr>
<td></td>
<td>• Residue control</td>
</tr>
<tr>
<td></td>
<td>• Quality of feed and water</td>
</tr>
<tr>
<td></td>
<td>• Farm location</td>
</tr>
<tr>
<td></td>
<td>• Sources of feeds and water</td>
</tr>
<tr>
<td></td>
<td>• Record keeping</td>
</tr>
<tr>
<td></td>
<td>• Construction and equipment</td>
</tr>
<tr>
<td></td>
<td>• Infrastructure</td>
</tr>
</tbody>
</table>

REFERENCES

FAO/WHO. 2006. - FAO/WHO guidance to governments on the application of HACCP in small and/or less-developed food businesses. FAO Food and Nutrition Paper No. 86. FAO, Rome.

3. Work on the revision of the Guidelines is ongoing in the Codex Committee on Residues of Veterinary Drugs in Foods (CCRVDF). The revision also encompasses the Code of Practice for the Control of the Use of Veterinary Drugs (CAC/RCP 38/1993).
The Manual of Diagnostic Tests and Vaccines for Terrestrial Animals* (Terrestrial Manual) aims to facilitate international trade in animals and animal products and to contribute to the improvement of animal health services world-wide. The principal target readership is laboratories carrying out veterinary diagnostic tests and surveillance, as well as vaccine manufacturers and regulatory authorities in Member Countries/Territories. The objective is to provide internationally agreed diagnostic laboratory methods and requirements for the production and control of vaccines and other biological products.

As a companion volume to the Terrestrial Animal Health Code, the Terrestrial Manual sets laboratory standards for both general issues (sampling methods, assay validation, laboratory biosafety, etc.) as well as for all OIE listed diseases and several other diseases of global importance. In particular it specifies (in blue font) those ‘Prescribed Tests’ that are recommended for use in health screening for international trade or movement of animals.

The Terrestrial Manual, covering infectious and parasitic diseases of mammals, birds and bees, was first published in 1989. Each successive edition has extended and updated the information provided. This sixth edition includes new chapters onGuidelines for international standards for vaccine banks, Turkey rhinotracheitis, Small hive beetle infestation (Aethina tumida) and camelpox, and Mycoplasma synoviae has been added to the chapter on Avian mycoplasmosis (previously the chapter focused on Mycoplasma gallisepticum).

Each chapter of the Terrestrial Manual has been written and reviewed by experts of international standing and has been approved by all the OIE Member Countries/Territories (172 Members in 2008). The Terrestrial Manual has become widely adopted as a key reference book for veterinary laboratories around the world.

The complete edition of the Terrestrial Manual is available in English in paper and in web format; new versions in Spanish and in French will be soon available in both formats.

*Formerly entitled Manual of Standards for Diagnostic Tests and Vaccines

... an outstanding compilation of diagnostic procedures and a ready source of information... for any veterinary (or parasitologic) diagnostic laboratory. The Manual has been designed for practical use in the laboratory setting.

Journal of Parasitology

The book is a mine of information for all dealing with veterinary diseases...

SGM Quarterly
The aim of the OIE Terrestrial Animal Health Code (hereafter referred to as the Terrestrial Code) is to assure the sanitary safety of international trade in terrestrial animals and their products as well as the control of listed terrestrial animal diseases. This is achieved by detailing the health measures to be used by the veterinary authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, while avoiding unjustified sanitary barriers to trade.

The health measures in the Terrestrial Code are formally adopted by the OIE International Committee meeting in plenary each year at the OIE General Session.

This 17th edition, which will be published in August 2008, incorporates modifications to the Terrestrial Code agreed at the 76th General Session in May 2008. These include revised chapters on the following subjects: general definitions, notification criteria for listing diseases, obligations and ethics in international trade, import risk analysis, evaluation of Veterinary Services, zoning and compartmentalisation, animal health measures applicable before and at departure, border posts and quarantine stations in the importing country, international transfer and laboratory containment of animal pathogens, rabies, foot and mouth disease, rinderpest, contagious caprine pleuropneumonia, bovine tuberculosis, bovine spongiform encephalopathy, equine influenza, equine rhinopneumonitis, equine viral arteritis, African horse sickness, African swine fever, classical swine fever, avian influenza and Newcastle disease.

Also included are revised appendices on prescribed and alternative diagnostic tests for OIE listed diseases, on categorisation of diseases and pathogenic agents by the International Embryo Transfer Society, on inactivation procedures of foot and mouth disease virus and of avian influenza virus, on surveillance for bovine spongiform encephalopathy, for foot and mouth disease, for classical swine fever, for avian influenza and for bluetongue, on animal welfare, on factors to consider in conducting bovine spongiform encephalopathy risk assessment and on model veterinary certificates. This edition includes a new chapter dedicated to Aethina tumida (small hive beetle) and six new appendices covering the application of compartmentalisation, surveillance for African horse sickness and Newcastle disease, the design and implementation of identification systems to achieve animal traceability, the production of livestock and horses using somatic cell nuclear transfer (SCNT) and the role of the Veterinary Services in food safety.

The 2008 edition of the Terrestrial Code is a two-volume publication. Volume one contains general recommendations (so-called ‘horizontal standards’) and volume two contains recommendations on specific diseases (so-called ‘vertical standards’) including recommendations on agent inactivation and on disease surveillance and risk assessment. While the format of the Terrestrial Code has thus been significantly modified, no significant changes in content (other than those approved at GS76, as mentioned above) have been introduced.

To help Members use the Terrestrial Code, the OIE has updated a Glossary containing definitions of the key terms and expressions used in the publication.

The Terrestrial Code may be viewed on the OIE Web site at the following address: www.oie.int/eng/normes/mcode/en_sommaire.htm.
The aim of the Aquatic Animal Health Code (hereafter referred to as the ‘Aquatic Code’) is to ensure the sanitary safety of international trade in aquatic animals (fish, molluscs and crustaceans) and their products, while avoiding unjustified sanitary barriers. This is achieved through the detailing of health measures to be used by the Veterinary Authorities of importing and exporting countries to avoid the transfer via trade of agents pathogenic for animals or humans as well as to control listed aquatic animal diseases. The health measures in the Aquatic Code (in the form of standards, guidelines and recommendations) have all been formally adopted by the OIE International Committee. The 11th Edition incorporates the modifications to the Aquatic Code agreed at the 76th General Session of the International Committee in May 2008. These include new and revised chapters on the following subjects: definitions; diseases listed by the OIE; obligations and ethics in international trade; guidelines for import risk analysis; recommendations for safe transport of aquatic animals and aquatic animal products; infectious myonecrosis; white tail disease; infection with Mikrocytos mackini; gyrodactylosis (Gyrodactylus salaris); infection with Batrachochytrium dendrobatidis; and infection with ranavirus; and new appendices on welfare of farmed fish; control of aquatic animal health hazards in aquatic animal feed; and aquatic animal health surveillance. The Aquatic Code may also be accessed on the OIE Web site at www.oie.int/eng/normes/code/en_sommaire.htm.

World Animal Health presents a synthesis of animal health information from OIE Member Countries and Territories as well as from non-OIE Members and provides a unique tool worldwide for all those involved in the development of animal production, international trade in animals and animal products and the epidemiology and control of animal diseases, including zoonoses.

It consists of tables of data on the occurrence of OIE-listed diseases (www.oie.int/eng/maladies/en_classification2008.htm?eid17) and their impact in each country/territory. The tables include the number of outbreaks reported for each disease, with the number of susceptible animals, cases, or dead animals. They also contain information on the most important control, prevention and prophylaxis measures adopted and the number of animals slaughtered, destroyed or vaccinated. Animal population figures are also provided. Other sections provide detailed information on human cases of OIE-listed zoonotic diseases, veterinary personnel, National Reference Laboratories and vaccine production.

With a wealth of clearly presented information, World Animal Health is a key reference tool for the animal health sector around the world.
The impact of climate change on human and animal health is a highly topical issue and extensive debates and speculations often predict the worst.

Following the most recent report of the Intergovernmental Panel on Climate Change, this special issue of the *Scientific and Technical Review* is being developed to provide an overview of the latest scientific knowledge on the impact of climate change on animal diseases and the control options currently available. This publication will, therefore, help increase the reader’s understanding of what can be expected.

Following the presentation of the origin of climatic change and of the latest projections for the future, the cascading effects that affect host-pathogen systems will be reviewed. To help clarify how climate change will affect the occurrence, distribution or epidemiology of certain diseases, a number of case-studies will be presented, covering different animal diseases of major importance (including those affecting marine ecosystems). The final section will examine different world regions, in terms of the diseases likely to be affected and the mitigation strategies in place or in development.

The World Organisation for Animal Health (OIE) is the international animal welfare standard-setting organisation. This timely publication covers all aspects of the scientific assessment and management of animal pain, an essential component of animal welfare. Mainly based on a series of papers presented during the Australian Animal Welfare Strategy (AAWS) Science Summit on Pain & Pain Management (Melbourne, May 2007), it also contains unpublished papers from other parts of the world.

This publication will be essential reading for everyone involved in animal welfare and in the assessment and management of animal pain.
Name and function of OIE permanent staff who participated in meetings or visits: February to June 2008

Central Bureau

General Directorate
- **Bernard Vallat**: Director General
- **Jean-Luc Angot**: Deputy Director General (Administration, Finances and Staff Management)
- **Gideon Brückner**: Deputy Director General (Animal Health and International Standards)
- **Alex Thierrmann**: Advisor to the Director General & President of the OIE Terrestrial Animal Health Standards Commission
- **Maria Zampaglione**: Head of the Communication Unit
- **Willem Doppers**: Chargé de mission

Administration and Management Systems Department
- **Daniel Chaisemartin**: Head of Department
- **Bertrand Fishault**: Deputy Head of Department
- **Alejandra Balmont**: Bilingual secretary & Conference assistant

Animal Health Information Department
- **Karim Ben Jебara**: Head of Department
- **Francesco Berlingieri**: Deputy Head of Department
- **Maria Cristina Ramírez**: Chargée de mission

International Trade Department
- **Sarah Kahn**: Head of Department
- **Leopoldo Stuardo**: Deputy Head of Department
- **Yamato Atagi**: Chargé de mission
- **Gillian Mylrea**: Chargée de mission

Publications Department
- **Paul-Pierre Pastoret**: Head of Department
- **Annie Souyi**: Deputy Head of Department
- **Tamara Benicasa**: Sales and marketing agent
- **Marie Teissier**: Documentalist

Scientific and Technical Department
- **Gideon Brückner**: Head of Department
- **Tomoko Ishibashi**: Deputy Head of Department
- **Alessandro Ripani**: Chargé de mission
- **Christianne Bruschke**: Chargé de mission
- **Keith Hamilton**: OFFLU Coordinator
- **François Diaz**: Officer in charge of validation of diagnostic assays
- **Lea Knopf**: Officer in charge of the recognition of countries’ animal disease status
- **Sara Linnane**: Scientific editor

Regional Activities Department
- **Gastón Funes**: Head of Department
- **Mara Elma González**: Deputy Head of Department
- **Stéphane Berlaud**: Chargé de mission
- **Nilton Antônio de Morais**: Chargé de mission
- **Nathaly Monsalve**: Bilingual secretary

OIE Regional and Sub-Regional Representations

Africa
- **Abdoulaye Bouna Niang**: Past President of the OIE International Committee & Regional Representative for Africa (Bamako, Mali)
- **Yacoubou Samaké**: Deputy Regional Representative (Bamako, Mali)
- **Nicolas Denormandie**: Chargé de mission (Bamako, Mali)
- **Mariam Minta**: Secretary (Bamako, Mali)
- **Aissata Bagayoko**: Secretary (Bamako, Mali)
- **Bonaventure J. Mtei**: Sub-Regional Representative for Southern Africa (Gaborone, Botswana)
- **Patrick Bastiaensen**: Chargé de mission (Gaborone, Botswana)

Americas
- **Luis Osvaldo Barcos**: Regional Representative for the Americas (Buenos Aires, Argentina)
- **Osvaldo Luján Ibarra**: Senior Technical (Buenos Aires, Argentina)
- **François Caya**: Chargé de mission (Buenos Aires, Argentina)
- **José Joaquín Oreamuno**: Sub-Regional Representative for Central America (Panama City, Panama)
- **Yolanda Conte**: Secretary (Panama City, Panama)

Asia and the Pacific
- **Teruhide Fujita**: Regional Representative for Asia and the Pacific (Tokyo, Japan)
- **Akemi Kamakawa**: Deputy Regional Representative (Tokyo, Japan)
- **Kenji Sakurai**: Deputy Regional Representative (Tokyo, Japan)
- **Yumiko Sakurai**: Chargé de mission (Tokyo, Japan)
- **Serin Shin**: Chargé de mission (Tokyo, Japan)
- **Ikuo Koike**: Technical Consultant (Tokyo, Japan)
- **Matsuake Yamage**: Technical Consultant (Tokyo, Japan)
- **Than Hla**: Technical Consultant (Tokyo, Japan)
- **Mastur Aeny Rachman Noor**: Chargé de mission (Bangkok, Thailand)
- **Takako Shimizu**: Secretary (Tokyo, Japan)
- **Shiro Yoshimura**: Senior Deputy Regional Representative (Bangkok, Thailand)
- **Ronello C. Abila**: Sub-Regional Coordinator, SEAFMD Coordination Unit (Bangkok, Thailand)
- **Nichola Hungerford**: Communications Officer, SEAFMD (Bangkok, Thailand)
- **Tri Satya Putri Naipospos**: Chargée de mission (Bangkok, Thailand)

Europe
- **Nikola T. Belev**: President of the OIE Regional Commission for Europe & Regional Representative for Eastern Europe (Sofia, Bulgaria)
- **Violeta G. Radikova**: Chargé de mission (Sofia, Bulgaria)
- **Rina Kostova**: Secretary (Sofia, Bulgaria)
- **Caroline Planté**: Sub-Regional Representative for Eastern Europe (Brussels, Belgium)

Middle East
- **Ghazi Yehia**: Regional Representative for the Middle East (Beirut, Lebanon)
- **Mustafa Mestom**: Consultant (Beirut, Lebanon)
- **Pierre Primit**: Chargé de mission (Beirut, Lebanon)
- **Rita Rizik**: Secretary (Beirut, Lebanon)
- **Hany Imam**: Secretary (Beirut, Lebanon)
- **Khodr Rejeili**: Assistant (Beirut, Lebanon)
- **Mahmoud Gaddafi**: Assistant (Beirut, Lebanon)

1. Southeast Asia Foot and Mouth Disease Campaign
Name and function of experts who represented the OIE in meetings or visits

<table>
<thead>
<tr>
<th>Name</th>
<th>Function and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan Abdel Aziz Aidaros</td>
<td>Member of the OIE Working Group on Animal Production Food Safety & OIE Expert</td>
</tr>
<tr>
<td>Eva-Maria Bernoth</td>
<td>President of the OIE Aquatic Animal Health Standards Commission</td>
</tr>
<tr>
<td>Jean-Philippe Dop</td>
<td>Deputy of the Assistant Director of Food Safety, General Directorate of Food, Ministry of Agriculture and Fisheries, Paris (France)</td>
</tr>
<tr>
<td>Trevor Drew</td>
<td>OIE Expert & Head of Virology Department, VLA2 Weybridge (United Kingdom)</td>
</tr>
<tr>
<td>Elisabeth Erlacher-Vindel</td>
<td>OIE Expert</td>
</tr>
<tr>
<td>J. Gardner Murray</td>
<td>President of the OIE Regional Commission for Asia, the Far East and Oceania</td>
</tr>
<tr>
<td>Barry O’Neil</td>
<td>President of the OIE International Committee</td>
</tr>
<tr>
<td>Martial Petitclerc</td>
<td>OIE Consultant</td>
</tr>
<tr>
<td>Amadou Samba Sidibé</td>
<td>Past Regional Representative for Africa</td>
</tr>
</tbody>
</table>

meetings and visits

February 2008 (complement of Vol. 2-2008)

<table>
<thead>
<tr>
<th>Title of the event</th>
<th>Place</th>
<th>Date</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation on the results of reviewing the national HPAI control strategy and the HPAI contingency plan</td>
<td>Philippines, Thailand, Malaysia, Vietnam, Myanmar, Laos, Cambodia & Indonesia</td>
<td>15 February - 15 March 2008</td>
<td>Dr S. Yoshimura</td>
</tr>
<tr>
<td>Meeting with Heads of FMD Programmes of the Andean Community countries (CAN)</td>
<td>Lima (Peru)</td>
<td>26 February 2008</td>
<td>Dr L.O. Barcos</td>
</tr>
<tr>
<td>67th Meeting of the Andean Technical Committee for Agricultural Health (COTASA)</td>
<td>Lima (Peru)</td>
<td>27-28 February 2008</td>
<td>Dr L.O. Barcos</td>
</tr>
<tr>
<td>Activities’ meeting of the OIE Sub-Regional Representation for Central America’s</td>
<td>(Panama City, Panama)</td>
<td>28-29 February 2008</td>
<td>Dr L.O. Barcos & Dr J.J. Oreamuno Toledo</td>
</tr>
</tbody>
</table>

March 2008 (complement of Vol. 2-2008)

<table>
<thead>
<tr>
<th>Title of the event</th>
<th>Place</th>
<th>Date</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>14th Meeting of the OIE Sub-Commission for Foot and Mouth Disease in South-East Asia</td>
<td>Hanoi (Vietnam)</td>
<td>9-14 March 2008</td>
<td>Dr B. O’Neil, Dr B. Vallat, Dr A. Dehove, Dr G. Funes, Dr T. Fujita, Dr A. Kamakawa, Dr R.C. Abila, Dr T.S.P. Naipospos, Ms N. Hungerford & Dr J.G. Murray</td>
</tr>
<tr>
<td>Visit of the Veterinary Services of Honduras</td>
<td>Tegucigalpa (Honduras)</td>
<td>10-11 March 2008</td>
<td>Dr J.J. Oreamuno Toledo</td>
</tr>
<tr>
<td>Visit of the Veterinary Services of El Salvador and meeting with OIRSA</td>
<td>San Salvador (El Salvador)</td>
<td>12-14 March 2008</td>
<td>Dr J.J. Oreamuno Toledo</td>
</tr>
<tr>
<td>35th Meeting of the South-American Commission for Foot and Mouth Disease Control (COSALFA)</td>
<td>Porto Alegre (Brazil)</td>
<td>12-14 March 2008</td>
<td>Dr L.O. Barcos</td>
</tr>
<tr>
<td>Visit of the Veterinary Services of the Republic of Korea</td>
<td>Seoul (Republic of Korea)</td>
<td>21 March 2008</td>
<td>Dr T. Fujita</td>
</tr>
<tr>
<td>Meeting of the Pan-American Council of Superior Education in Veterinary Sciences (COPEVET)</td>
<td>Lima (Peru)</td>
<td>24-28 March 2008</td>
<td>Dr J.J. Oreamuno Toledo</td>
</tr>
<tr>
<td>OIE/NACA Regional Workshop on Aquatic Animal Health</td>
<td>Bangkok (Thailand)</td>
<td>25-28 March 2008</td>
<td>Dr D. Chaisemartin, Dr K. Ben Jebra, Dr M.C. Ramirez, Dr E.-M. Bernoth, Dr T. Fujita, Dr Y. Sakurai & Ms T. Shimizu</td>
</tr>
<tr>
<td>Workshop on 'The Importance of Farm Animal Welfare Science to Sustainable Agriculture'</td>
<td>Beijing (People’s Republic of China)</td>
<td>26-31 March 2008</td>
<td>Dr J.G. Murray</td>
</tr>
<tr>
<td>Workshop on SPS Capacity building tools</td>
<td>Geneva (Switzerland)</td>
<td>31 March 2008</td>
<td>Dr S. Kahn</td>
</tr>
<tr>
<td>Regional Annual Meeting of Chief Veterinary Officers (CVOs) organised by FAO in the frame of a project titled ‘Controlling Transboundary Animal Diseases in Central Asia’</td>
<td>Ankara (Turkey)</td>
<td>31 March 1 – 1 April 2008</td>
<td>Dr C. Planté</td>
</tr>
</tbody>
</table>

2- Veterinary Laboratories Agency
3- OIRSA: Organismo Internacional Regional de Sanidad Agropecuaria (Regional International Organization for Plant Protection and Animal Health)
4- Network of Aquaculture Centres in Asia-Pacific
April 2008

<table>
<thead>
<tr>
<th>Title of the event</th>
<th>Place</th>
<th>Date</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informal meetings on Transparency, Special & Differential Treatment and Regionalization</td>
<td>Geneva (Switzerland)</td>
<td>1 April 2008</td>
<td>Dr S. Kahn</td>
</tr>
<tr>
<td>41st meeting of the SPS® Committee</td>
<td>WTO Headquarters, Geneva (Switzerland)</td>
<td>2-3 April 2008</td>
<td>Dr B. Vallat & Dr S. Kahn</td>
</tr>
<tr>
<td>OFFLU Steering Committee meeting</td>
<td>OIE Headquarters, Paris (France)</td>
<td>3 April 2008</td>
<td>Dr Ch. Bruschke & Dr K. Hamilton</td>
</tr>
<tr>
<td>STDF® Working Group meeting</td>
<td>Geneva (Switzerland)</td>
<td>4 April 2008</td>
<td>Dr S. Kahn & Dr G. Funes</td>
</tr>
<tr>
<td>3rd Meeting of GF-TADs® Regional Steering Committee for Africa</td>
<td>FAO Headquarters, Rome (Italy)</td>
<td>7 April 2008</td>
<td>Dr G. Funes, Dr A. Dehove & Dr A.B. Niang</td>
</tr>
<tr>
<td>Workshop on: “Transboundary animal diseases and market access: future options for the beef industry in southern Africa”</td>
<td>Roodevaal (South Africa)</td>
<td>7-9 April 2008</td>
<td>Dr G. Brückner</td>
</tr>
<tr>
<td>3rd Session of the Commission on Phytosanitary Measures</td>
<td>Rome (Italy)</td>
<td>7-11 April 2008</td>
<td>Dr G. Mylrea</td>
</tr>
<tr>
<td>Conference on the methicillin resistant staphylococcus aureus</td>
<td>Brussels (Belgium)</td>
<td>8 April 2008</td>
<td>Dr Ch. Bruschke</td>
</tr>
<tr>
<td>11th Meeting of Alivé Executive Committee</td>
<td>FAO Headquarters, Rome (Italy)</td>
<td>8-10 April 2008</td>
<td>Dr B. Vallat, Dr G. Funes, Dr A. Dehove, Dr A.B. Niang, Dr A.S. Sidibé & Prof. P.-P. Pastoret</td>
</tr>
<tr>
<td>SCOFCAH Animal Health meeting</td>
<td>Brussels (Belgium)</td>
<td>9 April 2008</td>
<td>Dr Ch. Bruschke</td>
</tr>
<tr>
<td>2nd Asian PRRSpective Symposium</td>
<td>Macau (People’s Republic of China)</td>
<td>9-10 April 2008</td>
<td>Dr T. Drew</td>
</tr>
<tr>
<td>Mission to Egypt National Avian Influenza Laboratory and NAMRU3</td>
<td>Cairo (Egypt)</td>
<td>9-13 April 2008</td>
<td>Dr K. Hamilton</td>
</tr>
<tr>
<td>Videoconference with the World Bank (PVS and use of PVS)</td>
<td>FAO Headquarters, Rome (Italy)</td>
<td>10 April 2008</td>
<td>Dr G. Funes & Dr A. Dehove</td>
</tr>
<tr>
<td>Meeting of the European national reference laboratories for avian influenza and Newcastle disease</td>
<td>Brussels (Belgium)</td>
<td>10-11 April 2008</td>
<td>Dr Ch. Bruschke</td>
</tr>
<tr>
<td>Meeting with EFSA to finalise the EFSA opinion on avian influenza</td>
<td>Brussels (Belgium)</td>
<td>11 April 2008</td>
<td>Dr Ch. Bruschke</td>
</tr>
<tr>
<td>SPINAP meeting</td>
<td>FAO Headquarters, Rome (Italy)</td>
<td>11 April 2008</td>
<td>Dr A. Dehove</td>
</tr>
<tr>
<td>30th FAO Regional Conference for Latin-American and the Caribbean Countries</td>
<td>Brasilia (Brazil)</td>
<td>13-16 April 2008</td>
<td>Dr L.O. Barcos</td>
</tr>
<tr>
<td>Classical Swine Fever – Assessment of control tools and research gaps</td>
<td>Brussels (Belgium)</td>
<td>14-17 April 2008</td>
<td>Dr Ch. Bruschke</td>
</tr>
<tr>
<td>Regional Seminar for the Middle East organised in the framework of the Joint Action of the Council of the European Union in support of the Biological and Toxic Weapons Convention</td>
<td>Rome (Italy)</td>
<td>16-17 April 2008</td>
<td>Dr C. Planté</td>
</tr>
<tr>
<td>Official invitation of the Government of Kazakhstan to develop its links with the OIE</td>
<td>Astana (Kazakhstan)</td>
<td>16-19 April 2008</td>
<td>Dr B. Vallat & Prof. Dr N.T. Belev</td>
</tr>
<tr>
<td>Avian influenza in the Middle East countries: Preparedness and Control</td>
<td>Kuwait City (Kuwait)</td>
<td>20-22 April 2008</td>
<td>Dr K. Hamilton, Dr G. Yehia & Dr P. Prinot</td>
</tr>
<tr>
<td>Meeting with Mr Wakabayashi, Minister of Agriculture, Forests and Fisheries of Japan</td>
<td>Tokyo (Japan)</td>
<td>21 April 2008</td>
<td>Dr J.-L. Angot, Dr A. Dehove & Dr T. Fujita</td>
</tr>
<tr>
<td>Meeting with Mr Hiroshi OE, Deputy Director General for general affairs of the Ministry of Foreign Affairs of Japan</td>
<td>Tokyo (Japan)</td>
<td>21 April 2008</td>
<td>Dr J.-L. Angot & Dr A. Kamakawa</td>
</tr>
<tr>
<td>Inception Meeting for the OIE/Japan Trust Fund Project for Strengthening Highly Pathogenic Avian Influenza Control in Asia</td>
<td>Tokyo (Japan)</td>
<td>21-22 April 2008</td>
<td>Dr J.-L. Angot & Dr A. Dehove</td>
</tr>
<tr>
<td>Meeting with the agence JICS®</td>
<td>Tokyo (Japan)</td>
<td>22 April 2008</td>
<td>Dr J.-L. Angot & Dr A. Dehove</td>
</tr>
</tbody>
</table>

Dr J.-L. Angot & Dr A. Dehove at the meeting with the agence JICS, Tokyo (Japan), 22 April 2008
April 2008 (cont.)

<table>
<thead>
<tr>
<th>Title of the event</th>
<th>Place</th>
<th>Date</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>IADB/INTAL/WTO Seminar on the SPS Agreement; Visit of the Veterinary Services</td>
<td>Asuncion (Paraguay)</td>
<td>22-24 April 2008</td>
<td>Dr. L.O. Barcos</td>
</tr>
<tr>
<td>of Paraguay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual meetings with beneficiary countries, preparation of a programme to</td>
<td>Tokyo (Japan)</td>
<td>23 April 2008</td>
<td>Dr. A. Dehove, Dr. T. Fujita, Dr. A. Kamakawa, Dr. I. Koike, Dr. M. Yamage, Dr. T. Hla & Dr. M. A.R. Noor</td>
</tr>
<tr>
<td>strengthen the diagnostic capacity of laboratories, projects to provide material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for laboratories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives to animal testing; New approaches in the development and control of</td>
<td>Dubrovnik (Croatia)</td>
<td>23-24 April 2008</td>
<td>Dr. S. Kahn</td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Regional Coordination Meeting for Animal Health in North Africa and Egypt</td>
<td>Avila (Spain)</td>
<td>23-25 April 2008</td>
<td>Dr. G. Brückner & Dr. C. Planté</td>
</tr>
<tr>
<td>Implementation of activities of the 2008 programme of the OIE Regional Representation</td>
<td>Abidjan (Ivory Coast)</td>
<td>25 April - 2 May 2008</td>
<td>Dr. Y. Samaké</td>
</tr>
<tr>
<td>for Africa, in accordance with the 4th Strategic Plan of the OIE (notably, activities dealing with the governance of Veterinary Services)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visit to Brazil in the preparation of a project proposal on the implementation of compartmentalisation of the Brazilian poultry industry</td>
<td>Mato Grosso, Goiás, Santa Catarina & Rio Grande do Sul (Brazil)</td>
<td>27 April - 4 May 2008</td>
<td>Dr. A. Thiermann & Dr. G. Funes</td>
</tr>
<tr>
<td>4th Ordinary General Meeting of the European Association of Veterinary Diagnostics</td>
<td>OIE Headquarters, París (France)</td>
<td>28 April 2008</td>
<td>Dr. F. Diaz</td>
</tr>
<tr>
<td>manufacturers (EAVDM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workshop on surveillance networks in the Mediterranean and Balkan Countries</td>
<td>Teramo (Italy)</td>
<td>28-30 April 2008</td>
<td>Prof. Dr. N.T. Belev</td>
</tr>
<tr>
<td>16th Meeting of the ASEAN Sectoral Working Group on Livestock (ASGL)</td>
<td>Phnom Penh (Cambodia)</td>
<td>28-30 April 2008</td>
<td>Dr. T. Fujita</td>
</tr>
<tr>
<td>‘Ceremony at the University of Pennsylvania, School of Veterinary Medicine, for the</td>
<td>Philadelphia (United States of America)</td>
<td>29 April - 2 May 2008</td>
<td>Dr. B. Vallat & Ms. G. Mamaghani</td>
</tr>
<tr>
<td>presentation of the ‘Penn Vet World Award 2008’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OIE/AusAID Program on Strengthening Veterinary Services (PSVS) in South Asia: ‘1st Workshop on Veterinary Legislation and Governance’</td>
<td>Phnom Penh (Cambodia)</td>
<td>30 April - 2 May 2008</td>
<td>Dr. R.C. Abila, Dr. T.S.P. Naipospos, Dr. J.G. Murray & Dr. M. Petitclerc</td>
</tr>
<tr>
<td>May 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May 2008

<table>
<thead>
<tr>
<th>Title of the event</th>
<th>Place</th>
<th>Date</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting with FAO Regional Representation for Asia and the Pacific</td>
<td>Bangkok (Thailand)</td>
<td>1 May 2008</td>
<td>Dr. T. Fujita & Dr. T. Hla</td>
</tr>
<tr>
<td>40th Anniversary of the EISMV of Dakar (1968-2008). Research and veterinary</td>
<td>Dakar (Senegal)</td>
<td>5 May 2008</td>
<td>Prof. P. -P. Pastoret</td>
</tr>
<tr>
<td>education for developmental needs: what approaches should be taken?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Official visit to Guyana and Suriname’s Veterinary Services – Meeting as to</td>
<td>Suriname, Guyana, Panama</td>
<td>5-13 May 2008</td>
<td>Dr. L.O. Barcos & Dr. J. J. Oreamuno Toledo</td>
</tr>
<tr>
<td>coordinate Sub-Regional Representation for Central America’s activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workshop of the Alliance for rabies control and prevention (ARC)</td>
<td>Turin (Italy)</td>
<td>6-8 May 2008</td>
<td>Dr. G. Brückner</td>
</tr>
<tr>
<td>Tracking the Emergence and Global Spread of Foot-and-Mouth Disease (FMD)</td>
<td>London (United Kingdom)</td>
<td>9 May 2008</td>
<td>Ms. S. Linnane</td>
</tr>
<tr>
<td>Regional Workshop for Newly Assigned OIE Delegates</td>
<td>Bangkok (Thailand)</td>
<td>13-14 May 2008</td>
<td>Dr. A. Thiermann, Dr. T. Fujita, Dr. A. Kamakawa, Dr. Y. Sakurai, Ms. T. Shimizu & Dr. R.C. Abila</td>
</tr>
<tr>
<td>Meeting FAQ/UNISIC/OMS/donors on avian influenza</td>
<td>Rome (Italy)</td>
<td>14 May 2008</td>
<td>Dr. B. Vallat</td>
</tr>
<tr>
<td>Advanced methods for validation of diagnostic tests</td>
<td>Berlin (Germany)</td>
<td>14-16 May 2008</td>
<td>Dr. F. Diaz</td>
</tr>
<tr>
<td>Meeting of a Working Group of the Animal Health Advisory Committee</td>
<td>European Commission</td>
<td>19 May 2008</td>
<td>Dr. D. Chaisemartin, Dr. A. Dehove & Dr. C. Planté</td>
</tr>
<tr>
<td>61st World Health Assembly</td>
<td>Geneva (Switzerland)</td>
<td>19-21 May 2008</td>
<td>Dr. W. Droppers</td>
</tr>
<tr>
<td>Workshop on mobilizing aid for trade for SPS-related technical cooperation in the</td>
<td>Phnom Penh (Cambodia)</td>
<td>21-22 May 2008</td>
<td>Dr. A. Kamakawa</td>
</tr>
<tr>
<td>Greater Mekong delta sub-region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West-African Regional Planning and Skills-Building Workshop on strategic</td>
<td>Dakar (Senegal)</td>
<td>22-23 May 2008</td>
<td>Dr. P. Bastaens</td>
</tr>
<tr>
<td>communication for the prevention and control of highly pathogenic avian influenza</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
June 2008

<table>
<thead>
<tr>
<th>Title of the event</th>
<th>Place</th>
<th>Date</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plenary General Assembly of the International Federation of Agricultural Producers (IFAP)</td>
<td>Warsaw (Poland)</td>
<td>3-4 June 2008</td>
<td>Dr B. Vallat</td>
</tr>
<tr>
<td>One World One Health Strategic Development Meeting</td>
<td>WHO Headquarters, Geneva (Switzerland)</td>
<td>3-4 June 2008</td>
<td>Dr A. Thiermann, Dr A. Dehove & Dr L. Knopf</td>
</tr>
<tr>
<td>High-level conference on world food security: the challenges of climate change and bioenergy</td>
<td>FAO Headquarters, Rome (Italy)</td>
<td>3-5 June 2008</td>
<td>Dr W. Droppers</td>
</tr>
<tr>
<td>2nd Annual meeting of EPISODE: ‘The need for speed’ - Bluetongue Satellite Symposium: ‘Bluetongue in Europe, back to the future’</td>
<td>Brescia (Italy)</td>
<td>4-7 June 2008</td>
<td>Dr K. Ben Jebara & Dr E. Erhacher-Vindel</td>
</tr>
<tr>
<td>Livestock Week 2008: “9th Annual Inter-Agency Donor Group (IADG) Meeting”</td>
<td>Frankfurt (Germany)</td>
<td>5-6 June 2008</td>
<td>Dr A. Thiermann & Dr A. Dehove</td>
</tr>
<tr>
<td>Annual General Assembly of the European Veterinary Federation (EVF)</td>
<td>Vienna (Austria)</td>
<td>6-7 June 2008</td>
<td>Dr B. Vallat</td>
</tr>
<tr>
<td>OIE technical mission to evaluate the disease situation in Vietnam, with regard to PRRS</td>
<td>Hanoi (Vietnam)</td>
<td>6-11 June 2008</td>
<td>Dr T. Drew</td>
</tr>
<tr>
<td>15th Inter-American Meeting at Ministerial Level on Health and Agriculture (RIMSA 15) and 11th Meeting of the Hemispheric Committee for the Eradication of Foot and Mouth Disease (COFEPA 11)</td>
<td>Rio de Janeiro (Brazil)</td>
<td>8-14 June 2008</td>
<td>Dr B. Vallat & Dr L.O. Barcos</td>
</tr>
<tr>
<td>Meeting with the Minister of Agriculture of Brazil and the authorities of Pará State (in Belém)</td>
<td>Brasilia (Brazil)</td>
<td>8-14 June 2008</td>
<td>Dr B. Vallat, Dr L.O. Barcos, Dr N.A. de Morais & Dr J.G. de Souza</td>
</tr>
<tr>
<td>WHO/OIE/FAO meeting – Presentation of the first technical report to Canada (CID)</td>
<td>Rome (Italy)</td>
<td>9 June 2008</td>
<td>Dr B. Vallat, Dr L.O. Barcos, Dr S. Shin, Dr R.C. Abila, Dr T.S.P. Naipospos & Ms N. Hungerford</td>
</tr>
<tr>
<td>Visit to Biopharma Veterinary Laboratory</td>
<td>Rabat (Morocco)</td>
<td>9-10 June 2008</td>
<td>Dr K. Hamilton</td>
</tr>
<tr>
<td>Preparatory meeting for the OIE Regional Seminar on Communication</td>
<td>Bangkok (Thailand)</td>
<td>9-11 June 2008</td>
<td>Dr T. Fujita, Dr K. Sakurai & Dr S. Shin</td>
</tr>
<tr>
<td>Preparatory meeting for FAVA Congress, particularly for OIE Session</td>
<td>Bangkok (Thailand)</td>
<td>9-11 June 2008</td>
<td>Dr T. Fujita, Dr K. Sakurai, Dr S. Shin, Dr R.C. Abila, Dr T.S.P. Naipospos & Ms N. Hungerford</td>
</tr>
<tr>
<td>International Seminar on ‘Setting Food Safety Standards – Effects on international trade, particularly for developing countries’</td>
<td>The Hague (The Netherlands)</td>
<td>9-12 June 2008</td>
<td>Prof. S.A. Siorach & Dr C. Planté</td>
</tr>
<tr>
<td>OIE Seminar on Aquatic Animal Health in Southern Africa</td>
<td>Maputo (Mozambique)</td>
<td>10-12 June 2008</td>
<td>Dr F. Beringerie & Dr B.J. Mtei</td>
</tr>
<tr>
<td>Groupama ‘Meetings on ‘risk’ prevention in agriculture and agricultural commerce’</td>
<td>Strasbourg (France)</td>
<td>12 June 2008</td>
<td>Dr A. Dehove</td>
</tr>
<tr>
<td>76th Session of the Executive Committee of the European Commission for the Control of Foot and Mouth Disease (EUFMD)</td>
<td>Terceira Island, archipelago of the Azores (Portugal)</td>
<td>12-13 June 2008</td>
<td>Dr G. Brückner</td>
</tr>
<tr>
<td>Preparatory meeting to organise the OIE Regional Workshop on PRRS Control and Prevention for ASEAN countries</td>
<td>Hanoi (Vietnam)</td>
<td>12-13 June 2008</td>
<td>Dr T. Fujita & Dr K. Sakurai</td>
</tr>
<tr>
<td>Conference on agricultural risk management</td>
<td>Berlin (Germany)</td>
<td>16 June 2008</td>
<td>Dr J.-L. Angot</td>
</tr>
<tr>
<td>Asia-Pacific Economic Cooperation (APEC) dialogue on Avian Influenza risks in the Live Bird Market System (LBMS)</td>
<td>Bali (Indonesia)</td>
<td>16 June 2008</td>
<td>Dr W. Droppers</td>
</tr>
<tr>
<td>1st Technical Session of the Federation of the Poultry Industry (UOFA) of the West-African Economic and Monetary Union (WAEMU)</td>
<td>Abidjan (Ivory Coast)</td>
<td>16-18 June 2008</td>
<td>Dr Y. Samaké</td>
</tr>
<tr>
<td>25th FAO Regional Conference for Africa</td>
<td>Nairobi (Kenya)</td>
<td>16-20 June 2008</td>
<td>Dr A.B. Niang</td>
</tr>
<tr>
<td>OIE Regional Seminar on Veterinary Statutory Bodies, Private Veterinarians and Paraprofessionals in the Veterinary Services</td>
<td>Sofia (Bulgaria)</td>
<td>17-18 June 2008</td>
<td>Prof. Dr N.T. Belev, Dr C. Planté, Ms A. Balmont, Ms R. Kostova & Ms V. Radkova</td>
</tr>
<tr>
<td>Workshop on Practical Management Strategies for Avian Influenza and Emerging Infectious Diseases</td>
<td>Bangkok (Thailand)</td>
<td>18-19 June 2008</td>
<td>Dr R.C. Abila</td>
</tr>
<tr>
<td>18th Executive Board Meeting of the European Technology Platform for Global Animal Health (ETPGAH)</td>
<td>Brussels (Belgium)</td>
<td>19 June 2008</td>
<td>Dr C. Planté</td>
</tr>
</tbody>
</table>

14. Porcine reproductive and respiratory syndrome
15. UOFA: Union des organisations de la filière avicole (Union of Organizations of the Poultry Industry)
June 2008 (cont.)

<table>
<thead>
<tr>
<th>Title of the event</th>
<th>Place</th>
<th>Date</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Meeting of the Project Management Board of ‘Discontools’ ('Disease Control Tools')</td>
<td>Brussels (Belgium)</td>
<td>19 June 2008</td>
<td>Dr. C. Planté</td>
</tr>
<tr>
<td>General Assembly of the European Federation for Animal Health and Sanitary Security (EFAHSS)</td>
<td>Brussels (Belgium)</td>
<td>20 June 2008</td>
<td>Dr. C. Planté</td>
</tr>
<tr>
<td>WHO/OIE Expert Workshop on Protecting Humans from Domestic and Wildlife Rabies in the Middle East</td>
<td>Amman (Jordan)</td>
<td>23-25 June 2008</td>
<td>Dr. L. Knopf, Dr. G. Yehia, Prof. H. Aidaros, & Mr. H. Imam</td>
</tr>
<tr>
<td>Workshop on feasibility study for the organisation of a labelling procedure for research proposals</td>
<td>FAO Headquarters, Rome (Italy)</td>
<td>24-25 June 2008</td>
<td>Prof. P.-P. Pastoret</td>
</tr>
<tr>
<td>World Bank Meeting: ‘Livestock and Slaughter Waste Management’</td>
<td>Paris (France)</td>
<td>24-25 June 2008</td>
<td>Dr. D. Chaisemartin, Dr. J.-P. Dop & Dr. E. Erlacher-Vindel</td>
</tr>
<tr>
<td>42nd SPS Committee meeting</td>
<td>Geneva (Switzerland)</td>
<td>24-25 June 2008</td>
<td>Dr. S. Kahn</td>
</tr>
<tr>
<td>OIE Regional Seminar on Veterinary Services and Border Control</td>
<td>Sofia (Bulgaria)</td>
<td>25-26 June 2008</td>
<td>Dr. G. Mylrea, Ms. A. Balmont, Prof. N. Taleev, Dr. C. Planté & Ms. V. Radvova</td>
</tr>
<tr>
<td>1st International Dairy Federation (IDF) Dairy Farming Summit on Global Warming and Climatic Changes</td>
<td>Edinburgh, Scotland (United Kingdom)</td>
<td>25-27 June 2008</td>
<td>Dr. G. Brückner</td>
</tr>
<tr>
<td>International Seminar on Cattle Breeding Worldwide, Sustainability and Health</td>
<td>Oentsjerk (The Netherlands)</td>
<td>26 June 2008</td>
<td>Dr. W. Doppers</td>
</tr>
<tr>
<td>STDF Information Session on Private Standards: STDF Working Group Meeting</td>
<td>Geneva (Switzerland)</td>
<td>26-27 June 2008</td>
<td>Dr. S. Kahn & Dr. G. Funes</td>
</tr>
<tr>
<td>3rd EFSA BSE-TSE Network Meeting</td>
<td>Limassol (Cyprus)</td>
<td>26-28 June 2008</td>
<td>Dr. L. Knopf</td>
</tr>
<tr>
<td>STDF/13 Regional Workshop ‘Lifting Sanitary Constraints on Trade of Livestock and Livestock Commodities’</td>
<td>Amman (Jordan)</td>
<td>28-30 June 2008</td>
<td>Dr. G. Yehia, Prof. H. Aidaros & Mr. H. Imam</td>
</tr>
<tr>
<td>9th Meeting of the Malaysia-Thailand-Myanmar (MTM) Tri-State Commission (TSC) for Peninsular Campaign for FMD Freedom</td>
<td>Bangkok (Thailand)</td>
<td>30 June - 1 July 2008</td>
<td>Dr. R.C. Abila, Dr. T.S.P. Naippospos, Ms. N. Hungerford & Dr. J.G. Murray</td>
</tr>
<tr>
<td>31st Session of the Codex Alimentarius Commission</td>
<td>Geneva (Switzerland)</td>
<td>30 June - 4 July 2008</td>
<td>Dr. B. Vallat, Dr. W. Doppers & Dr. G. Mylrea</td>
</tr>
</tbody>
</table>

Meetings and Visits

Staff changes

Dr Tomoko Ishibashi
Dr Tomoko Ishibashi returned to her home country, Japan, in June 2008, to take up the position of Deputy to the Chief Veterinary Officer and the Delegate of Japan to the OIE, in the Animal Health Division of the Ministry of Agriculture, Food and Fisheries. She joined the OIE at a stage in her career when she already had exposure to a broad spectrum of activities related to international trade and trade negotiations relative to animal health and food safety. The OIE was thus privileged to have shared her expertise and excellent services since July 2004. She worked until October 2007 as Deputy Head of the International Trade Department and then joined the Scientific and Technical Department as Deputy Head of the Department. During her period in both Departments she represented the OIE on many international conferences and missions where she was recognised for her excellent ability to explain and defend OIE procedures and policies for the development of standards. Her expertise in this regard was also often utilised to represent the OIE at the meetings of the SPS Committee of the WTO in Geneva. Tomoko made many valuable contributions to the OIE but will be especially remembered for her excellent knowledge of the OIE Terrestrial Animal Health Code where she not only helped in managing the meetings of the Code Commission, its Working and ad hoc Groups, but also actively contributed to the debates in developing and setting OIE standards. She has through her work set an example to be remembered for her dedication and precision in applying OIE procedures within its decision-making process and in liaison with Delegates and experts during meetings of ad hoc Groups and Specialist Commissions.

Dr Christianne Bruschke
Dr Christianne Bruschke returned to the Netherlands in June 2008 to become Deputy of the Chief Veterinary Officer and Delegate to the OIE of the Netherlands after working in the OIE Scientific and Technical Department as Chargée de Mission since May 2005. Christianne joined the OIE at the peak of the highly pathogenic avian influenza (HPAI) crisis and soon became the key focal point to represent and establish the position of the OIE within international discussion bodies and with OIE Members. Her past experiences in a research environment and vaccinology were utilised to the full by the OIE in her dedicated task to manage the responsibilities of the OIE in dealing with all issues related to the global highly pathogenic avian influenza threat. She was instrumental in developing OIE guidelines and policy for the application of vaccination for avian influenza as well as the global strategy for avian influenza control in collaboration with the FAO and WHO. She played a major role in organising and managing two major international scientific conferences on avian influenza on behalf of the OIE as well as international pledging conferences in Geneva, Beijing, Bamako and India. Christianne contributed as co-author and peer reviewer of several international publications on guidelines for avian influenza control and aspects of avian influenza related to the human/animal interface of the disease. During her period at the OIE she also represented the OIE on the executive committee of the European Technical Platform for Global Animal Health (ETPGAH) where she did steering work to promote the recognition of OIE standards and guidelines in the deliberations of the ETPGAH. She will be especially remembered for her excellent negotiation abilities and the professional approach she applied in ensuring the recognition of the role of the OIE in dealing with the HPAI crisis.
Aquatic Animal Health Standards Commission

OIE, Paris, 3-7 March 2008

The Aquatic Animal Health Standards Commission (Aquatic Animals Commission) met at the OIE Headquarters in Paris, France, from 3 to 7 March 2008. The outcomes of this meeting were detailed in a report distributed to OIE Delegates and placed on the OIE Web site. The most important points dealt with during the meeting were as follows:

- fourteen updated chapters and appendices for the Aquatic Animal Health Code were proposed to Members;
- OIE listing of two amphibian diseases, infection with *Batrachochytrium dendrobatidis* and infection with ranavirus, was proposed;
- further progress was made with harmonising the Aquatic Animal Health Code and the Terrestrial Animal Health Code;
- the proposal for OIE listing of the sabellid worm (*Terebrasabella heterouncinata*) and the proposed case definition for abalone viral mortality complex were submitted for comment;
- ongoing discussion on antimicrobial resistance in aquatic animals;
- steps to promote cooperation and partnership with other international organisations and regional organisations involved in aquatic health were identified.

Terrestrial Animal Health Standards Commission

OIE, Paris, 10-14 March 2008

The Terrestrial Animal Health Standards Commission met at the OIE Headquarters from 10 to 14 March 2008 to address Member comments on the report of its September 2007 meeting and work done by OIE ad hoc groups on Laboratory Animal Welfare, Animal Identification and Traceability, Model Veterinary Certificates, and Salmonellosis and the OIE Working Group on Animal Production Food Safety. The Commission proposed several texts for adoption at the 76th General Session. Highlights included:

1) Revised Model Veterinary certificates.

2) ‘General guidelines on compartmentalisation’ and the ‘containment zone’ as a trade facilitating mechanism in the event of a disease incursion.

3) Harmonised texts on avian influenza and Newcastle disease.

4) Guidelines on identification and traceability of animals.

5) Guidelines on the role of Veterinary Services in food safety.

A new ad hoc Group on Trade in Animal Products (‘commodities’) is due to meet in July 2008. The ad hoc Group will examine how OIE standards could be applied or modified, drawing on existing science-based recommendations for safe trade in animal products, to assist countries that are not able to achieve or maintain country/zone freedom for key diseases. If it is found that existing standards need to be modified, scientific research into the infectivity of animal products may be proposed.

Ad hoc Group on Animal Welfare and Livestock Production Systems

OIE, Paris, 8-10 April 2008

The ad hoc Group on Animal Welfare and Livestock Production Systems met at the OIE Headquarters from 8 to 10 April 2008 to discuss a document prepared by Dr David Fraser and Hassan Aidaros, entitled ‘Discussion paper on the development of animal welfare guidelines for production systems (terrestrial animals)’, as well as the working documents and some additional inputs. The ad hoc Group addressed the issues identified in its terms of reference and developed a document entitled ‘Recommendations to the OIE on developing Guidelines on Animal Welfare in Livestock Production Systems’, to be submitted to the Working Group on Animal Welfare for its meeting in June 2008.

The main conclusion of the ad hoc Group was that the OIE should start to develop Animal Welfare Guidelines for Livestock Production Systems, and the first priority of the OIE should be broiler chickens.
Ad hoc Group on Aquatic Animal Health Surveillance

OIE, Paris, 14-16 April 2008

The ad hoc Group on Aquatic Animal Surveillance met at the OIE Headquarters from 14 to 16 April 2008. The ad hoc Group reviewed Member comments on the draft Aquatic Code chapter on aquatic animal health surveillance and amended the text where appropriate. The ad hoc Group also continued to draft text for the OIE ‘Handbook on Aquatic Animal Health Surveillance’. This publication will provide practical guidance in the form of a reference document for Members wishing to develop or refine their aquatic animal health surveillance programmes. The OIE may convene further meetings of this ad hoc Group, if required, to finalise the manuscript for the handbook.

Meeting of the Working Group on Animal Welfare

OIE, Paris, 17-19 June 2008

The OIE Working Group on Animal Welfare held its seventh meeting at the OIE Headquarters from 17 to 19 June 2008. Following the rotational system of industry representation, the industry representative participating as a full member of the Working Group in 2008 is the representative of the International Federation of Agricultural Producers (IFAP).

This year the Working Group has a new member, Dr Morosi Molomo, Delegate of Lesotho, who replaces Dr Walter Masiga. During his introduction to the participants, Dr Vallat expressed his gratitude to Dr Masiga for his input during his six years of fruitful work as a member of the Working Group.

The Working Group reviewed the four sets of guidelines adopted at the 76th General Session of the International Committee, in May 2008, taking into account outstanding submissions received, and recommended appropriate modifications to the texts.

The meeting also addressed the following issues:

- The Working Group discussed the definition of animal welfare adopted at the 76th General Session.
- A new draft of the dog population control guidelines was reviewed, taking into account OIE Member comments. A revised text will be submitted to the Terrestrial Animal Health Standards Commission at its meeting in September 2008.
- The Working Group, following the recommendation of the ad hoc Group on Animal Welfare in Livestock Production Systems, considered that a specific ad hoc Group on broiler chickens should be convened as the next step to develop relevant OIE recommendations.
- The Working Group discussed the organisation of the 2nd OIE Global Conference on Animal Welfare, to be held in Cairo, Egypt, from 20 to 22 October 2008.
- The Working Group analysed the future work of the OIE on welfare of farmed fish, following the adoption of the ‘Introduction to Guidelines for the Welfare of Farmed Fish’.
- Dr Wilkins presented a report on the gaps in the existing OIE animal welfare guidelines as regards poultry. The Working Group proposed that an electronic consultation be conducted to prepare a report for submission to the Group at its next meeting.

Some other important topics discussed at the meeting were the OIE position on private standards as these relate to animal welfare, possible future work by the OIE on the harvesting of wildlife, particularly fur seals, and some important OIE regional initiatives to support the implementation by Members of the OIE animal welfare standards.
Ad hoc Group on Swine Vesicular Disease

OIE, Paris, 24-25 April 2008

An ad hoc Group on Swine Vesicular Disease (SVD) at the OIE Headquarters on 24 and 25 April 2008 to determine whether the current OIE Terrestrial Animal Health Code chapter on SVD adequately reflects the characteristics of the disease in light of recent scientific findings. The Group used the approach adopted in the Terrestrial Code chapter on foot and mouth disease and recommended that the concepts of ‘compartmentalisation’ and ‘containment zone’ can also be applied to SVD. The ad hoc Group will also formulate specific surveillance guidelines for SVD pending the adoption of the revised chapter by the OIE International Committee.

Ad hoc Group for the Evaluation of Country Status for Foot and Mouth Disease

OIE, Paris, 29-30 April 2008

The ad hoc Group for the Evaluation of Country Status for Foot and Mouth Disease met prior to the 76th General Session to evaluate Member applications received and to make recommendations to the Scientific Commission for adoption by the OIE International Committee. The draft Resolutions proposed for adoption by the International Committee to update the procedures for the evaluation of Members’ disease status were reviewed and supported by the ad hoc Group.

Meetings of the Bureau of the Scientific Commission for Animal Diseases

OIE, Paris, 24 May 2008

The Bureau of the Scientific Commission for Animal Diseases met just before the 76th General Session to finalise the draft Resolutions to be submitted to the International Committee for adoption. The Bureau met again just after the General Session to review the Commission’s work programme and priority issues for the forthcoming year in accordance with decisions and recommendations emanating from the 76th General Session.

Ad hoc Group on Validation of Diagnostic Assays

OIE, Paris, 3-5 June 2008

The first meeting of the ad hoc Group on Validation of Diagnostic Assays was held at the OIE Headquarters from 3 to 5 June 2008 to review the chapters on validation of diagnostic assays in the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Terrestrial Manual) and to develop guidelines on how to apply the OIE validation template to different types of tests or diseases. The OIE validation template is used within the framework of the OIE Procedure for validation and certification of diagnostic assays. The ad hoc Group recommended merging the two chapters on validation of diagnostic assays in the Terrestrial Manual into a single chapter covering all the relevant aspects. It also recommended that a series of appendices to this new chapter be developed, describing best practices for several different subject areas associated with test development and optimisation and with test validation. The ad hoc Group decided to draft guidelines for the OIE validation template, to describe approaches that may be used to generate, analyse and present the required data. A new prototype template was developed for consideration by the Biological Standards Commission.

Ad hoc Group on porcine reproductive and respiratory syndrome

OIE, Paris, 9-11 June 2008

The first meeting of the ad hoc Group on Porcine Reproductive and Respiratory Syndrome (PPRS) was held at the OIE Headquarters from 9 to 11 June 2008 to consider the development of a chapter and disease surveillance guidelines for the Terrestrial Animal Health Code for this OIE-listed disease. The Group acknowledged the possible trade implications and the lack of reliable discriminatory diagnostic tests to distinguish between the existing and known viral strains. To assist OIE Members the ad hoc Group proceeded in the interim to develop a document with guidance and information on the disease, its diagnosis, prevention and control, to be placed on the OIE Web site.

Ad hoc Group on Epidemiology

OIE, Paris, 11-12 June 2008

The ad hoc Group on Epidemiology met at the OIE Headquarters from 11 to 12 June 2008 to commence work on drafting an outline for an OIE Handbook on Animal Disease Surveillance. The handbook will also cover vector-borne and wildlife diseases and other issues such as monitoring for residues in food-producing animals as they relate to domestic animals and public health.
New personal at the OIE Regional Representation for Asia and the Pacific

Dr Kenji Sakurai
Dr Kenji Sakurai joined the OIE Regional Representation for Asia and the Pacific as Deputy Regional Representative on 1 May 2008.

Dr Sakurai graduated from Obihiro University of Agriculture and Veterinary Medicine, Japan, in 1990. Soon after, he joined the Japan Overseas Cooperation Volunteers (JOCV), one of JICA’s technical cooperation schemes, and worked in Paraguay for two years as a field veterinarian.

In 1994 he joined the Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan and worked as a Veterinary Officer for eleven years, including four years at the Animal Quarantine Service. In 2005 Dr Sakurai was transferred from MAFF to the Ministry of Foreign Affairs to serve at the Japanese Embassy in Uruguay as First Secretary and as Agricultural Attaché.

Dr Serin Shin
Dr Serin Shin joined the OIE Regional Representation for Asia and the Pacific on 1 June 2008 as Project Officer. She will be working in the field of animal health information/communication and the prevention and control of animal infectious diseases, including highly pathogenic avian influenza.

Meeting to update resource needs for foot and mouth disease control and eradication in the Americas

The OIE, via the Regional Representation of the Americas in its capacity as GF-TADs Regional Secretariat, coordinated a meeting to update resource needs for foot and mouth disease control in the Americas, which was held in Buenos Aires, Argentina, in January 2008, the FAO, CVP CAN and OIE participation.

1- GF-TADs: Global Framework for the Progressive control of Transboundary Animal Diseases
2- FAO: Food and Agriculture Organization of the United Nations
3- CVP: Standing Veterinary Committee of the Southern Cone (Comité Veterinario Permanente del Cono Sur)
4- CAN: Andean Community

Participants at the meeting
14th Meeting of the OIE Sub-Commission for Foot and Mouth Disease (FMD) in South-East Asia

The 14th Meeting of the OIE Sub-Commission for Foot and Mouth Disease (FMD) in South-East Asia was held in Hanoi, Vietnam, from 10 to 14 March 2008. Participants from 20 countries/territories attended the meeting.

The meeting commended the achievements of the South-East Asia Foot and Mouth Disease Campaign (SEAFMD). The Campaign involves the coordinated control of FMD by eight countries¹ in the ASEAN² region and is coordinated through an OIE Regional Coordination Unit, with the support of the Australian Government³. The meeting concluded that the SEAFMD Campaign is now a mature programme and in the best situation to consolidate the control/eradication zones and further expand existing FMD free areas. The Director General of the OIE said that the biggest achievement was that the multi-pronged approach used by the SEAFMD was so effective that it is now being looked upon as a model by the international scientific community to control other transboundary animal diseases and zoonoses.

The achievements of the SEAFMD Campaign during the past 12 months were presented. They have included: training in outbreak investigation of over 500 veterinarians in Vietnam, Cambodia and Laos; strong developments within the various progressive zoning programmes (MTM, LMWG and UMWG⁴); inclusion of the People’s Republic of China in the Campaign; continued liaison with ASEAN, industry and the private sector; endorsement of SEAFMD Roadmap 2020 and proposal to strengthen monitoring and evaluation. The meeting also discussed progress reports by Members, sharing of FMD information from observers and partner organisations, and drafting of recommendations to further strengthen the SEAFMD Campaign. Changes in the sub-regional situation of FMD were also presented. The FMD situation in each country was discussed in depth and it was recommended that more samples should be submitted to the laboratory and that molecular studies should be conducted to better understand the epidemiology of the different FMD serotypes circulating in South-East Asia.

¹- Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Thailand and Vietnam
²- ASEAN: Association of South-East Asian Nations
³- Web site of the SEAFMD Campaign: www.seafmd-rcu.oie.int
⁴- MTM: Malaysia-Thailand-Myanmar; LMWG: Lower Mekong Working Group; UMWG: Upper Mekong Working Group

Cultural visit in Ha Long Bay, UNESCO World Heritage Site

Participants at the meeting
Regional Workshop on Aquatic Animal Health for Asia and the Pacific

The OIE/NACA1 Regional Workshop on Aquatic Animal Health for Asia and the Pacific was held in Bangkok, Thailand, from 25 to 28 March 2008. This was the first workshop on aquatic animal health, inviting focal points on aquatic animal health from both the veterinary and fisheries departments of national governments.

The Workshop was attended by 19 participants from OIE Members and Territories that have been participating in the Quarterly Aquatic Animal Disease Reporting Systems in the Region, namely Australia, Bangladesh, Bhutan, Cambodia, Hong Kong (Special Administrative Region of China), India, Indonesia, Malaysia, Myanmar, Nepal, New Zealand, Pakistan, the People’s Republic of China, Philippines, Singapore, Sri Lanka, Chinese Taipei, Thailand and Vietnam.

The purpose of this Workshop was:
1. to recognize the importance of negative impacts of aquatic animal diseases, the need for their control and prevention and the responsibility of government authorities in this context;
2. to provide updated information on emerging aquatic animal diseases in the Region;
3. to train National Focal Points on OIE aquatic animal health standards (Aquatic Animal Health Code and Manual of Diagnostic Tests for Aquatic Animals) and on the OIE World Animal Health Information System (WAHIS), using computers for the purpose of (2) above; and
4. to strengthen regional collaboration on aquatic animal disease control and prevention.

Opening remarks were given by Dr Teruhide Fujita, OIE Regional Representative for Asia and the Pacific, Dr Sena DeSilva, Director General of NACA Secretariat, Dr Sakchai Sriboonsue, Chief Veterinary Officer and Director General of the Thai Department of Livestock Development, and Dr Supranee Chinabut, on behalf of the Director General of the Thai Department of Fisheries.

Lectures were given on ‘Economic impact of aquatic animal diseases’ by Dr Simon Funge-Smith of FAO-RAP2, ‘Important finfish diseases in Asia-Pacific’ by Dr Chinabut, and ‘Active surveillance of viral diseases in fish and shrimps in some Asian countries’ by Dr Gilda Lio-Po of SEAFDEC3.

Dr Eva-Maria Bernoth, President of the OIE Aquatic Animal Health Standards Commission, introduced the OIE standards for aquatic animal health and explained how to use them within the framework of the WTO4-SPS5 Agreement and the OIE standard-setting process.

Dr Karim Ben J ebara, Head of the OIE Animal Health Information Department, explained WAHIS and WAHID6.

The training session on immediate notification, follow-up reports, six-monthly reports and annual reports was led by Dr Karim Ben Jebara, Dr Daniel Chaisemartin, Head of the OIE Administration and Management Systems Department, and Dr Cristina Ramírez, Project Officer GLEWS7 of the OIE, using the computer facilities of the Faculty of Fisheries, Kasetsart University, Thailand.

From left to right: Dr Sena DeSilva (NACA), Dr Suprance Chinabut (Thailand), Dr Sakchai Sriboonsue (Thailand), Dr Teruhide Fujita (OIE)

1- NACA: Network of Aquaculture Centres in Asia-Pacific
2- FAO RAP: Regional Office for Asia and the Pacific, Food and Agriculture Organization of the United Nations
3- SEAFDEC: South East Asian Fisheries Development Center
4- WTO: World Trade Organization
5- SPS Agreement: WTO Agreement on the Application of Sanitary and Phytosanitary Measures
6- WAHID: World Animal Health Information Database
7- GLEWS: Global Early Warning System
The Workshop noted that aquaculture is significantly important to the Region because it accounts for about 90% of world aquaculture production and that aquaculture is facing problems, including aquatic animal diseases that are impediments to the continuing development of the sector and of safe international trade in aquatic animals and their products.

The Workshop recognised the development of regional cooperation on aquatic animal health, which includes the collection, dissemination and exchange of information and experience about OIE-listed diseases and other diseases of regional concern, and also the continued collaboration between the OIE, NACA and FAO for the improvement of aquatic animal health in the region.

The Workshop made several important recommendations, including stepping up the activities of the national focal points for the exchange of information and experience at the regional level and for active participation through the OIE Delegates in the OIE international standard-setting process, and development as soon as possible of a Memorandum of Understanding on cooperation between NACA and the OIE with a view to further strengthen cooperation between the two organisations on aquatic animal health information for the region and to set up the WAHIS/OIE-NACA Regional Core.
Appointment of permanent Delegates

12 March 2008
Moldavia
Dr Stamati Vsevolod
Director of veterinary Medicine,
Ministry of Agriculture and Food

21 March 2008
Uzbekistan
Dr Uldashov Nurbek Ergashovich
Head, Main State Veterinary
Department, Ministry of Agriculture and Water Resources

28 March 2008
Kazakhstan
Dr Akhmetzhan Akievich Sultanov
Director, Veterinary Control Department,
Ministry of Agriculture

30 March 2008
People’s Republic of China
Dr Khang Zhongquiu
Deputy Director General,
Veterinary Bureau,
Ministry of Agriculture

8 April 2008
Mali
Dr Kassoum Diakite
Chief Veterinary Officer, Ministry of
Livestock and Fisheries

22 April 2008
Russia
Dr Nikolai Vlasov
Deputy Director General, Veterinary
Department Ministry of Agriculture and Food

14 May 2008
Sierra Leone
Dr Francis A R Sankoh
Director, Livestock Services Division,
Ministry of Agriculture and Natural Resources

20 May 2008
Libya
Dr Giuma Elhafi
General Director,
National Center of Animal Health and Breeding Improvement

21 May 2008
United Kingdom
Dr Nigel Gibbens
Chief Veterinary Officer,
Department for Environment,
Food and Rural Affairs

26 May 2008
Kenya
Dr Peter Maina Ithondeka
Director of Veterinary Services,
Ministry of Livestock Development

4 June 2008
Niger
Dr Zourkaleni Alzouma Maiga
Director of Animal Health, Ministry of Animal Resources

27 June 2008
Luxembourg
Dr Albert Huberty
Chief Veterinary Officer,
Minister of Agriculture, viticulture and Rural Development

30 June 2008
Senegal
Dr Mbargou Lo
Chief Veterinary Officer, Ministry of Livestock Development
Based on their mutual interest in preventing the spread of unwanted organisms and diseases internationally within the aquatic environment, the World Organisation for Animal Health, hereinafter referred to as OIE, and the International Council for Exploration of the Seas, hereinafter referred to as ICES, agree to undertake the following activities:

1. Each party will keep the other party informed of activities that may be of mutual interest.

2. Each organisation will invite the other party to participate in meetings at which matters of mutual interest will be discussed. OIE and ICES will normally pay their own costs in response to such invitations. Note: Administrative arrangements for experts participating in working groups will follow the established rules of each organisation.

3. The OIE will forward to ICES its catalogue of publications to enable it to request OIE publications on activities related to the work of ICES. ICES will benefit from the same concessional rates as other organisations affiliated to the OIE and vice versa. OIE and ICES will exchange free of charge documents on subjects of mutual interest. Whereas the participation of experts in scientific working groups will follow the established rules of each organisation.

4. The two organisations will endeavour to develop further cooperation through both formal and informal consultations on the issues of common interest listed below as well as on other issues that may be identified by the two organisations in future.

 ISSUES OF COMMON INTEREST
 • General information on the aquaculture industry.
 • Scientific research on transfer and diseases of aquatic animals.
 • The development and revision of international policies, guidelines and standards relevant to the international movement of aquatic animals.
 • Information on activities of intergovernmental bodies such as WHO, FAO, WTO, IMO and ISO that may be relevant to international movement of aquatic animals.

Date: 10 December 2007

Gerd Hubold
General-Secretary of ICES

Bernard Vallat
Director General of the OIE
Agreement between
the World Organisation for Animal Health (OIE)
and the International Poultry Council (IPC)

1. The World Organisation for Animal Health, hereinafter referred to as OIE, and the International Poultry Council, hereinafter referred to as IPC, will keep the other party informed of its activities which may be of mutual interest.

2. The OIE is the world organisation in charge of animal health and welfare. It publishes namely health standards for international trade in animals, and animal products, provides a better guarantee of the safety of food of animal origin, promotes animal welfare, through a science-based approach, provides expertise and encourages international solidarity in the control of animal diseases and is in charge of collecting, analysing and disseminating scientific veterinary information.

3. The IPC was organized on 7 October 2005 to bring together leaders of the private sector in representing the world’s poultry-producing countries in addressing issues concerning trade, science, food safety and animal welfare, and to promote a common understanding of and confidence in poultry products among customers and consumers worldwide.

4. The two organisations will endeavour to cooperate further through both formal and informal consultations on issues of common interest, in particular on the issues listed below.

ISSUES OF COMMON INTEREST

- The provision of general information on the poultry sector, particularly on its relations and interactions with official veterinary services.
- Veterinary research into poultry diseases.
- Cooperation in the development and revision of international animal health and zoonoses standards relevant to the international trade in poultry and poultry products.
- Cooperation in the development and promotion of science-based international animal welfare standards relevant to the international trade in poultry and poultry products.
- Exchange of views on the approach by intergovernmental bodies such as the WHO, FAO and their subsidiary body (Codex Alimentarius) on disease surveillance and control strategies, food safety and in protecting the health and economic interests of consumers, which may impact on the poultry sector and/or international trade.
- Exchange of views and participation at meetings on relevant aspects of animal health and zoonoses, animal welfare and food safety.

5. Each organisation will invite the other party to participate as observer in its meeting where matters of mutual interest may arise and make the reports of these meetings available.

6. The OIE and the IPC will exchange free copies of documents and publications on subjects of mutual interest. Both organisations will benefit from the concessionary rates applied to their affiliated members or organisations for further orders of publications.

Date: 27 May 2008

Tage Lysgaard
First Vice-President of the International Poultry Council (IPC)

Bernard Vallat
Director General of the World Organisation for Animal Health (OIE)
Report on the training course ‘Advanced methods for the validation of diagnostic tests’

Berlin, Germany, 14-16 May 2008

How do I choose the ‘best’ cut-off value for a diagnostic test? How do I validate a test when there is no gold standard available? How do I validate and use tests at the herd level? These and other questions were the driving issues behind the workshop on ‘Advanced methods for the validation of diagnostic tests’, which was held at the Federal Institute for Risk Assessment (BfR; www.bfr.bund.de), Berlin, Germany from 14 to 16 May 2008, with the support of the World Organisation for Animal Health (OIE)

As technologies for diagnostic testing for infectious and other hazards in live animals, animal products, food and animal feed are rapidly developing, so are new mathematical methods applied to the validation of tests and interpretation of results. However, for the professionals dealing with validation, certification or use of diagnostic methods, it is not a simple task to follow the statistical and epidemiological developments in these areas. The course presented state-of-the-art approaches to solve problems of test validation and hands-on practical training.

Eighteen participants from twelve countries, most of whom had a background in diagnostic test development, heard from Dr Diaz (OIE) about the current involvement of the OIE in the validation of diagnostic assays (i.e. standards on general principles and the procedure for the certification of diagnostic kits as validated fit for specific purpose[s]), Dr Liebsch (BfR) presented OECD1 concepts of method validation in toxicology where, for example, alternative methods are to be validated as a replacement or refinement of existing experimental animal models in assessing toxicological hazards. Dr Gardner (University of California, Davis) and Dr Greiner (BfR) introduced the quantitative methods and led the practical exercises.

The technical lectures emphasised the importance of adequate samples for validation studies and explained how biases in sensitivity and specificity estimation can

1- OECD: Organisation for Economic Cooperation and Development
be avoided. The sampling design and the type and representativeness of tested samples are crucial. A better characterisation of repository samples and increased sample sharing are necessary to improve the standards in validation. A harmonised way of reporting validation of diagnostic tests in peer-reviewed literature would also ensure a better understanding and comparability of studies carried out.

Specialised software has been developed over the last decade that allows a much better statistical treatment of data arising from validation studies. In lectures and practical exercises participants were shown how to optimise the cut-off for a diagnostic test with continuous data, where test outcomes for truly diseased and non-diseased individuals usually overlap. The receiver-operating characteristic (ROC) analysis was recommended as a method to characterise the discriminatory performance of a diagnostic test without the need to decide on one particular cut-off value. The usefulness of ROC analysis for comparison of diagnostic tests was stressed.

Another emerging method for test validation is meta-analysis. It is good practice – and in some cases the only possible option – to summarise existing evidence from the literature. Meta-analysis can then provide a statistical summary analysis of diagnostic sensitivity, specificity or other parameters of interest and can even be used as a basis to explore whether features of the study design or study population had a conceivable impact on the parameter estimates.

Perhaps the biggest challenge in validation of diagnostic tests is the lack of a reliable gold standard, especially for ante-mortem diagnosis. Comparative tests are often imperfect or not even validated for the target population. When compared against such an imperfect ‘gold standard’, the new test always appears less sensitive or specific compared to the gold standard even when the contrary is true. Fortunately, there are now methods available to address this dilemma. So-called latent class models have the potential to correct this bias and are applied more and more frequently in validation of veterinary diagnostic tests. They are scientifically valid and often robust, but require a sound understanding of both the underlying biology and the mathematical concepts. The participants were able to apply and challenge these methods in a small experiment: one group defined a hypothetical validation scenario in which all parameters (sensitivity and specificity of the tests and prevalences in the study populations) were known. Another group obtained in a blinded manner hypothetical study data that were generated using the true parameters. Based on these data, which were in the same format as real-world data, all true parameters could be correctly estimated using the so-called maximum likelihood method. Bayesian models were presented as an even more flexible and powerful method for estimation of latent class models. These methods allow incorporation of prior knowledge (e.g. expert opinion of pilot study data) in the estimation and may allow some problems to be solved which are not statistically identifiable (i.e. there is no unique solution) when maximum likelihood methods are used.

Despite the challenging material, the course was an entertaining and inspiring experience for both the participants and instructors. New ideas were generated on how to treat one’s own study data or on how to tailor statistical methods even more to the practical needs. Requests for follow-up courses were made and will certainly be considered. This was the 8th international validation course jointly delivered by the two main instructors and it seems that the topic remains relevant in veterinary diagnostic areas.
A summary of Surveillance for notifiable avian influenza in Israel, 5th semi-annual national routine surveillance

Israel, January-March 2008

Intensive surveillance was continued in Israel to ensure that no highly pathogenic avian influenza (HPAI) or notifiable avian influenza (NAI) viruses were circulating in the poultry population in Israel. The surveillance was carried out in healthy flocks by serology and in flocks showing clinical signs by virus isolation and/or polymerase chain reaction (PCR).

Information received on 22 May 2008 from Dr Michel Bellaiche, Epidemiology Department, Veterinary Services and Animal Health, Israel

Flocks with clinical signs

Commercial and backyard flocks presenting respiratory signs and/or high mortality and where deaths of wild birds were reported in the locality, were sampled for virus isolation and/or PCR. Commercial flocks were sampled by taking 10 tracheal swabs and 10 cloacal swabs. If sampling was done for both virus isolation and PCR, 20 tracheal swabs and 20 cloacal swabs were taken. Virus isolation was attempted in two of the four regional poultry diagnostic laboratories or at the Kimron Veterinary Institute. PCR testing was performed at the Kimron Veterinary Institute or at the Zfat regional poultry diagnostic laboratory. A total of 1,008 flocks were tested by virus isolation and 3,258 flocks by PCR. These tests included: a) flocks showing clinical signs and b) healthy flocks in the surveillance zone tested following a single outbreak of HPAI-H5 in a small backyard flock on 3 January 2008.

Healthy flocks

Healthy flocks of broilers and meat-type turkeys were tested by ELISA (Idexx®). Any flock testing positive in even one sample of one test was then retested by haemagglutination inhibition (HI) for H5, H7 and H9. Samples with an HI titre of less than 4 were considered negative. Flocks testing positive for H9 and negative for H5 and H7 were considered negative. Where possible, older flocks were tested (e.g. chicken breeders > 40 weeks old) in order to increase the sensitivity of the surveillance. Commercial poultry flocks were sampled throughout the country. The number of flocks sampled was based on a sample size that would provide at least a 95% level of confidence of detecting a prevalence of NAI serologically positive flocks of 1% (at least 284 flocks). Each flock was sampled to provide a 95% level of confidence of detecting a serological prevalence of NAI of 25% (at least 11 samples). The number of flocks sampled for each poultry type was determined based on the number of farms of that type in each geographical area.
Additional weight was given to certain types based on certain considerations, such as table egg layers (long life span, low biosecurity), turkey flocks (increased sensitivity, relatively long life span), etc.

A total of 304 healthy flocks were sampled from all poultry raising areas in the country, which included broilers (63 flocks), table egg layers (154 flocks), meat turkeys (44 flocks), chicken breeders (27 flocks), turkey breeders (6 flocks) and free range layers (10 flocks). One 73 week old duck breeding farm and one 5 year old goose breeding farm were tested by virus isolation (in Israel there are only two duck farms and one goose breeding farm).

Results

All tests were negative for H5 and H7.

Table I below summarises the results of virus isolation and PCR testing from 1 January 2008 to 31 March 2008.

Conclusion

With a high degree of confidence we can state that Israel is free of NAI and HPAI.

Table I

Number of flocks or individual wild birds tested by virus isolation or polymerase chain reaction (PCR), by month and poultry type (or wild birds)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Broilers</td>
<td>177</td>
<td>205</td>
<td>131</td>
<td>513</td>
<td>487</td>
<td>585</td>
<td>435</td>
<td>1507</td>
</tr>
<tr>
<td>Table egg layers</td>
<td>62</td>
<td>34</td>
<td>52</td>
<td>148</td>
<td>76</td>
<td>53</td>
<td>55</td>
<td>184</td>
</tr>
<tr>
<td>Meat turkeys</td>
<td>28</td>
<td>22</td>
<td>12</td>
<td>62</td>
<td>186</td>
<td>54</td>
<td>57</td>
<td>297</td>
</tr>
<tr>
<td>Chicken breeders</td>
<td>84</td>
<td>11</td>
<td>4</td>
<td>99</td>
<td>700</td>
<td>35</td>
<td>0</td>
<td>735</td>
</tr>
<tr>
<td>Backyard</td>
<td>76</td>
<td>16</td>
<td>10</td>
<td>102</td>
<td>214</td>
<td>38</td>
<td>26</td>
<td>278</td>
</tr>
<tr>
<td>Wild birds*</td>
<td>54</td>
<td>16</td>
<td>14</td>
<td>84</td>
<td>122</td>
<td>90</td>
<td>45</td>
<td>257</td>
</tr>
<tr>
<td>Total</td>
<td>481</td>
<td>304</td>
<td>223</td>
<td>1008</td>
<td>1785</td>
<td>855</td>
<td>618</td>
<td>3258</td>
</tr>
</tbody>
</table>

* Includes samples taken from the wild bird survey
Turkey declares freedom from highly pathogenic avian influenza

Ankara (Turkey), 14th July 2008

Between 18 January and 12 April 2008, seven outbreaks of highly pathogenic avian influenza (HPAI) due to serotype H5N1 were officially recorded in Turkey (Fig. 1 and Table I). All of them were in small backyard poultry flocks and in all of them a stamping-out policy was applied (including disinfection of all affected establishments) without vaccination, followed by surveillance in accordance with Appendix 3.8.9. of the Terrestrial Animal Health Code during a three-month period.

Information from Prof.
Dr Muzzafer Aydemir,
Delegate of Turkey to the OIE
and Director General,
General Directorate of Protection
and Control, Ministry of Agriculture
and Rural Affairs, Ankara, Turkey

Historical background on the epizootic

The first outbreak was in Zonguldak Province, Çaycuma District, Sazköy Village, and started on 18 January 2008. This outbreak was notified to the Provincial Agricultural Directorate on 19 January. On the same day, it was confirmed as H5N1. Culling was completed on 23 January. The outbreak ended on 13 February 2008.

The second outbreak occurred in Samsun Province, Ondokuzmayıs District, Yörükler Village, on 26 January 2008. This outbreak was notified and confirmed on 28 January. Culling was completed on 3 February. All control measures were lifted on 25 February 2008.

The third outbreak occurred in Sakarya Province, Kaynarca District, Yeniçam Village, on 1 February 2008. It was notified and confirmed on 4 February. Culling was completed on 9 February. The outbreak ended on 3 March 2008.

The fourth outbreak occurred in Sakarya Province, Karasu District, Konacık Village, on 7 February 2008 and was notified and confirmed the same day. Culling was completed on 9 February. The outbreak ended on 3 March 2008.

Fig. 1
Distribution of HPAI outbreaks (please see coloured version, page 73)
The fifth outbreak occurred in Samsun Province, Terme District, Aybeder Village, on 8 February 2008 and was notified and confirmed the same day. Culling was completed on 8 February. The outbreak ended on 29 February 2008.

The sixth outbreak occurred in Sinop Province, Merkez District, Taşmanlı Village, on 11 February 2008 and was notified on 18 February. It was confirmed on 19 February. Samples were then sent to the other national reference laboratory and were again confirmed as H5N1 on 25 February. Culling was completed on 20 February. The outbreak ended on 12 March 2008.

The last outbreak (notified to the OIE as a reoccurrence of HPAI in a new zone) occurred in Edirne Province, Ipala District, Esetçe Village, on 9 March 2008. The outbreak was notified on 14 March and confirmed on 17 March. Culling was completed on 22 March. All control measures were lifted on 12 April 2008.

In all the outbreaks, a total of 7080 poultry and other domestic birds (6,697 chickens, 393 ducks, 9 geese, 4 turkeys and 7 domestic pigeons) were culled. Compensation was paid in all cases.

Final reports were sent to the OIE on 12 March and 14 April 2008, respectively.

<table>
<thead>
<tr>
<th>Province-District-Village</th>
<th>Start date</th>
<th>Confirmation date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsun-Terme-Aybeder</td>
<td>8 Feb 2008</td>
<td>8 Feb 2008</td>
<td>29 Feb 2008</td>
</tr>
</tbody>
</table>

Note: the end date was 21 days after the completion of stamping out and disinfection.

Legislation

Notification

In each case the disease was immediately notified to the OIE and the neighbouring countries, based on the laboratory test results confirming the presence of HPAI (H5N1).

Source of the outbreak

Based on the results of the outbreak investigations, the source of the outbreak was determined as direct or indirect contact with wild birds. In the cases of indirect contact, there had been contact with infectious materials (feathers and viscera) from hunted wild birds or hunting cartridges.
Census work at the affected sites demonstrated that many bridge species (birds that move between backyards where domestic birds are kept and wild bird habitats) could have come into contact with infectious materials discarded from hunted birds, or into direct contact with infected poultry.

A buzzard (Buteo buteo) that was moribund and was euthanized, which was found near the Yörükler site on 5 March 2008, was positive for H5N1-HPAI based on diagnostic tests at the FAO-OIE Reference Laboratory in Padova, Italy.

Three avian influenza isolates were sent to the Veterinary Laboratories Agency (VLA) in Weybridge, United Kingdom, for confirmation. The results of phylogenetic analysis placed these isolates in a cluster with others from 2008 and late 2007 from the Czech Republic, Romania, the United Kingdom and Poland. Nucleotide sequence comparisons identified United Kingdom isolates as having the closest similarity, at 99.6%.

Control measures

Stamping-out coupled with movement control and disinfection, were applied to control the disease without recourse to vaccination. Within a radius of 3 km (protection zone) around the outbreaks, poultry considered to be at risk were culled and compensation payments made. Surveillance zones (7-km radius) were established outside the 3-km-radius protection zones. Within both the protection and the surveillance zones, the transport of poultry and poultry products was prohibited for a period of 21 days after the completion of culling, cleaning and disinfection.

Active and passive surveillance was carried out before, during and after each outbreak. The results of sampling and testing in 2008 are described below.

Commercial poultry surveillance

Table II

<table>
<thead>
<tr>
<th>Number of commercial flocks clinically and laboratory investigated for AI during the period January - June 2008 (no positive cases were detected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broiler flocks</td>
</tr>
<tr>
<td>Clinical observation</td>
</tr>
<tr>
<td>Rapid Test</td>
</tr>
<tr>
<td>ELISA-AGID</td>
</tr>
</tbody>
</table>

ELISA: enzyme-linked immunosorbent assay
AGID: agar gel immunodiffusion test

Objectives:

- to strengthen early warning and detection systems as well as biosecurity measures in commercial poultry holdings regarding notifiable avian influenza (NAI);
- to prevent the introduction and spread of H5 or H7 low pathogenic avian influenza (LPAI) viruses in commercial poultry holdings in the event of the infection being detected in wild birds or backyard poultry;
- to identify commercial poultry holdings located in areas where the risk for disease introduction from wild birds or backyard poultry is considered to be higher;
- to certify commercial poultry holdings as free of NAI, in order to enhance consumer confidence and facilitate trade in poultry and poultry products.
• To support decision-making, and control and eradication programmes, as well as the evaluation of their effectiveness.

Backyard poultry surveillance

Fig. 2

Based on risk assessment and risk analysis, Turkey was divided into 3 risk zones (please see coloured version, page 73)

The objective was to collect clinical information to determine the existence of active HPAI outbreaks or probable outbreaks through carrying out clinical surveillance in backyard flocks. It was specifically aimed at investigating the true disease situation in the following three categories of provinces (Fig. 2).

a) Provinces where human cases had occurred in 2005 but no confirmed outbreaks in birds had been identified.

b) Provinces where outbreaks were confirmed during 2005, 2006 and 2007.

c) Post-outbreak surveillance as required by the European Union and the OIE.

For the purpose of this programme the epidemiological unit was considered to be the village.

In each province a sample of villages was randomly selected to give a 95% probability of detecting the presence of infection if the number of infected villages was at least 1%, based on the number of villages per province. In addition, other villages were purposively selected on the following grounds:

a) all villages where H5N1 was identified in humans but not in poultry;

b) in the villages determined by the Provincial Directorate to be at high risk, on the following grounds:

- villages close to wetland areas where there is a possibility of contact between domestic and wild birds;
- villages adjacent to active outbreaks.

Clinical surveillance was conducted by veterinarians either as separate campaigns or combined with other routine campaigns (vaccinations, medication, animal identification, etc.).
During these visits, cases of mortality and morbidity were observed and recorded using specially designed Outbreak Investigation Forms. In cases of mortality, samples were submitted to the regional Veterinary Control and Research Institute.

Wild bird surveillance (Tables III, IV and V)

Table III
Avian influenza-suspected samples sent to laboratories between 27/02/2007 (last outbreak of the 2007 epizootic) and 18/01/2008 (first outbreak of the 2008 epizootic)

<table>
<thead>
<tr>
<th></th>
<th>Total Samples</th>
<th>Tested Samples</th>
<th>Non-suitable samples</th>
<th>Tests ongoing</th>
<th>Suspect samples</th>
<th>Negative samples</th>
<th>Positive samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dom</td>
<td>Wild</td>
<td>Dom</td>
<td>Wild</td>
<td>Dom</td>
<td>Wild</td>
<td>Dom</td>
</tr>
<tr>
<td>Total</td>
<td>381</td>
<td>184</td>
<td>381</td>
<td>184</td>
<td>3</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Combined Total</td>
<td>565</td>
<td>565</td>
<td>15</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Dom: domestic birds
Wild: wild birds

Table IV
Avian influenza-suspected samples sent to laboratories during the epizootic period (from 19/01/2008 to 17/03/2008)

<table>
<thead>
<tr>
<th></th>
<th>Total Samples</th>
<th>Tested Samples</th>
<th>Non-suitable samples</th>
<th>Tests ongoing</th>
<th>Suspect samples</th>
<th>Negative samples</th>
<th>Positive samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dom</td>
<td>Wild</td>
<td>Dom</td>
<td>Wild</td>
<td>Dom</td>
<td>Wild</td>
<td>Dom</td>
</tr>
<tr>
<td>Etlik</td>
<td>39</td>
<td>43</td>
<td>39</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bornova</td>
<td>4</td>
<td>18</td>
<td>4</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pendik</td>
<td>52</td>
<td>29</td>
<td>52</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Konya</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Elaz</td>
<td>35</td>
<td>1</td>
<td>35</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erzurum</td>
<td>17</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Samsun</td>
<td>35</td>
<td>62</td>
<td>35</td>
<td>62</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Adana</td>
<td>39</td>
<td>13</td>
<td>39</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>224</td>
<td>167</td>
<td>224</td>
<td>167</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Combined Total</td>
<td>391</td>
<td>391</td>
<td>2</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Dom: domestic birds
Wild: wild birds

Table V
Avian influenza-suspected samples sent to laboratories after the epizootic period (from 18/03/2008 to 4/07/2008)

<table>
<thead>
<tr>
<th></th>
<th>Total Samples</th>
<th>Tested Samples</th>
<th>Non-suitable samples</th>
<th>Tests ongoing</th>
<th>Suspect samples</th>
<th>Negative samples</th>
<th>Positive samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dom</td>
<td>Wild</td>
<td>Dom</td>
<td>Wild</td>
<td>Dom</td>
<td>Wild</td>
<td>Dom</td>
</tr>
<tr>
<td>Etlik</td>
<td>12</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Bornova</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pendik</td>
<td>38</td>
<td>162</td>
<td>38</td>
<td>162</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Konya</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Elaz</td>
<td>31</td>
<td>5</td>
<td>31</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erzurum</td>
<td>24</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Samsun</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adana</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>185</td>
<td>133</td>
<td>184</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Combined Total</td>
<td>320</td>
<td>317</td>
<td>5</td>
<td></td>
<td>3</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Dom: domestic birds; **Wild:** wild birds
Live bird surveillance incorporated sampling of live-captured, apparently healthy wild birds to detect the presence of HPAI virus. Birds were captured using a variety of methods, sampled, and released on site. Samples to be collected for H5N1 AI investigation were as follows:

- two tracheal and two cloacal swabs, each swab being placed in a separate viral transport media tube (i.e. no pooled samples).
- Blood placed in a red or green top tube, refrigerated, spun down; serum or plasma placed in a cryovial and frozen.

a) Surveillance in hunter-killed birds
b) Dead wild birds
c) Sentinel species
d) Environmental sampling.

No further cases of HPAI have been observed in domestic poultry or wild birds.

The post-epizootic investigation, including laboratory results from backyard poultry and wild birds, showed no evidence of further spread of the infection after the quarantine period, and the control measures were therefore lifted.

Conclusion

On the basis of these results, Turkey declares itself free from highly pathogenic avian influenza, with effect from 14 July 2008, since more than three months have elapsed since stamping-out was applied to the last outbreak (stamping out of the last outbreak was completed on 22 March 2008), including disinfection of all affected establishments, without vaccination, and post-outbreak surveillance has been carried out during the said three-month period, in accordance with Chapter 2.7.12. and Appendix 3.8.9. of the OIE Terrestrial Animal Health Code (2007).
In response to Members’ requests for information on bovine spongiform encephalopathy (BSE) and trade, the OIE International Trade Department has prepared the following:

What is the key to controlling BSE?

BSE has a particular epidemiological pattern and is not contagious (i.e. in comparison with other OIE-listed diseases, such as foot and mouth disease). BSE is characterised by an extremely long incubation period (on average 4 to 6 years sometimes more).

The key to controlling BSE is:
- Removing specified risk material (SRM) and avoiding contamination of edible products by SRM;
- Effective implementation of a feed ban including random and/or targeted testing of the feed to prevent recycling of the infective agent (prion);
- Conduct of surveillance according to OIE recommendations. To increase the effectiveness of surveillance, it is important to target populations known to present a higher risk of BSE.

The number of BSE cases reported globally has decreased dramatically and this trend is continuing, as a result of the implementation of effective disease surveillance and control measures. The number of cases reported to the OIE may be found at: www.oie.int/eng/info/en_esb.htm?e1e5

Where can I find the number of cases reported annually?

Summarised information is available at:
- www.oie.int/eng/maladies/fiches/a_B115.htm
- http://www.oie.int/eng/ressources/BSE_EN_DISEASE_CARD.pdf

In the 20 or so years that have passed since BSE emerged as a disease in the United Kingdom (UK), scientific studies and practical experience have shown that the risks to public health are far, far smaller than originally feared by medical authorities. The UK has had by far the highest number of BSE cases, yet the number of people affected by variant Creutzfeldt-Jakob disease (vCJD) remains very small. Some experts estimate that the potential epidemic of clinical vCJD arising from food-borne exposure is unlikely to exceed 400 cases. The previous estimates of the human health consequences arising from exposure to the BSE agent have thus been dramatically reduced.
Where are the BSE standards?

What are their implications for international trade?

The most recent expert discussions within the OIE were reported to the OIE Members and made available to the public with the report of the October 2006 meeting of the Terrestrial Animal Health Standards Commission (Code Commission) (p. 319, ‘Supporting Documents for Chapter on BSE’), available on the OIE Web site at: www.oie.int/download/SC/2006/A_TAHSC_OCTOBER2006.pdf

It is virtually impossible to demonstrate scientifically that human vCJD cases have resulted from consuming meat. Taking into account all the scientific evidence, the most important risk management measure for animal health and public health is preventing exposure to SRM.

Both publications are available on line.

The OIE monitors scientific studies and expert opinion globally, in accordance with its mandate to ensure the safety of trade in animals and animal products, to improve animal health and to help to protect food safety globally.

The update and adoption of OIE standards normally follows a two-year cycle involving discussions of experts, who may be convened to participate in ad hoc groups (e.g. to address specific diseases or country classifications), consultations with Members and discussion amongst the elected members of the Code Commission then amongst Delegates at the General Session. More information on the OIE standard-setting procedures may be found at: www.oie.int/eng/normes/guide%20to%20OIE%20int%20standards%20v6.pdf

The experts involved in the Code Commission and ad hoc Groups come from all regions of the world.

The report of the Code Commission, which includes proposed modifications to Code texts is also in the public domain, at: www.oie.int/tahs/eng/en_reports.htm

Correctly applied, the recommendations of the Terrestrial Code ensure that the importation of animals or commodities of animal origin can take place with an optimal level of animal health and public health safety. The standards are based on the latest scientific findings, analysed in light of the excellent knowledge and the experience of globally recognised experts working with BSE.

It is important to note that certain commodities can be imported without posing a BSE risk, regardless of the BSE risk status of the exporting country. These include muscle meat from cattle less than 30 months of age, processed according to the Code recommendations.
What are the OIE recommendations on BSE and beef?

The Code recommendations, according to the defined country status, are as follows:

Regardless of country status, deboned skeletal muscle from cattle less than 30 months of age is safe, subject to the following conditions:
- a) mechanically separated meat (MSM) is excluded;
- b) cattle must have undergone veterinary ante- and post-mortem inspection;
- c) a pithing process has not been used;
- d) a stunning process that uses a device injecting compressed air or gas into the cranial cavity has not been used;
- e) all necessary steps have been taken to prevent contamination with SRM.

From a country of ‘undetermined BSE risk’, deboned skeletal muscle from cattle less than 30 months of age is safe, subject to the following conditions:
- a) cattle were not fed MBM or greaves from ruminants;
- b) cattle must have undergone veterinary ante- and post-mortem inspection;
- c) a pithing process has not been used;
- d) a stunning process that uses a device injecting compressed air or gas into the cranial cavity has not been used;
- e) all necessary steps have been taken to prevent contamination with SRM, nervous and lymphatic tissues exposed during the deboning process and MSM from the skull and vertebral column of cattle over 12 months of age.

From a country of ‘controlled BSE risk’, deboned skeletal muscle from cattle less than 30 months of age is safe, subject to the following conditions:
- a) cattle must have undergone veterinary ante- and post-mortem inspection;
- b) a pithing process has not been used;
- c) a stunning process that uses a device injecting compressed air or gas into the cranial cavity has not been used;
- d) all necessary steps have been taken to prevent contamination with SRM and MSM from the skull and vertebral column of cattle over 30 months of age.

From a country of ‘negligible BSE risk’, deboned skeletal muscle from cattle less than 30 months of age is safe, subject to the following conditions:
- a) cattle must have undergone veterinary ante- and post-mortem inspection;
- b) cattle must have been born after the ruminant-to-ruminant feed ban was effectively enforced (if there have been any indigenous cases).

Under the terms of the World Trade Organization (WTO) SPS Agreement, an importing country has the right to suspend imports pending explanation by the exporting country in the light of any emergency situation. A sudden large increase in the number of cases of BSE reported could constitute such a situation. However, it must be recognised that deboned beef from cattle less than 30 months of age is safe regardless of the BSE status of the country.

1. SPS Agreement: WTO Agreement on the Applications of Sanitary and Phytosanitary Measures.
Where can I find a list of OIE Members and their official BSE status?

The most recent list of OIE Members and their official BSE status can be found at: www.oie.int/eng/info/en_statesb.htm?e1d6

What procedures does the OIE use in granting official BSE country status to Members?

Beef imported from ‘negligible BSE risk’ countries is subject to less strict requirements and beef imported from ‘undetermined BSE risk’ countries is subject to the strictest requirements. In all cases, deboned beef is safe if produced according to the recommendations of the Terrestrial Code.

Of the BSE cases reported, a negligible number have occurred in cattle under 30 months of age. Deboned skeletal muscle meat does not present a food safety risk providing that the recommended risk mitigating measures are applied to prevent contamination with SRM. Currently a ‘cut off’ at 30 months of age provides a safety margin, to account for any theoretical risk of contamination by the BSE agent in younger animals. In practice, the normal onset of BSE is at 4-6 years of age. Trade in meat and other products from animals of more than 30 months is possible, based on the additional conditions recommended by the OIE.

When a Member decides to request an assessment by the OIE, it submits a dossier containing all relevant information to the Scientific Commission for Animal Diseases (SCAD). The SCAD is a totally independent Specialist Commission of the OIE. Its Members are elected democratically by the International Committee of the OIE using a secret ballot procedure. The OIE convenes an expert group to examine the dossiers submitted by OIE Members. All efforts are made to ensure that the membership of the expert group is technically and geographically balanced. The recommendations of the expert group are submitted to the SCAD for endorsement and then circulated to OIE Members for consultation (a 60-day period is provided).

All Member comments are considered by the SCAD, which may choose to make a further review and/or an on-site visit to Members to discuss the information in the dossier and the recommendations of the expert group. The official decision on Members’ status is finally taken by the International Committee of the OIE, consisting of the Delegates of OIE Members, and is based on a democratic vote taken at the annual General Session in May. There is no other pathway for adoption.

The report of the SCAD is first provided to OIE Delegates before being placed in the public domain.

To clarify certain aspects of these procedures, two new resolutions (Nos XXII and XXIII) were adopted during the General Session in May 2008, see: www.oie.int/downld/SG/2008/A_RESO_2008_webpub.pdf
Does a Member’s BSE status change if the country reports new BSE cases?

The control mechanisms and the implications in the event of the appearance of additional cases are determined according to the particular epidemiology of each disease. In the case of an OIE Member of ‘controlled BSE risk’ status, the detection of additional BSE cases demonstrates that the surveillance system is working as it should. The ‘controlled BSE risk’ status of the Member would not change if the Member reported only a small number of additional cases.

There is no ‘threshold number of cases’ for moving from one status to another. Nonetheless, any evidence of a significant change in incidence or other significant events related to BSE must be notified to OIE. The OIE International Committee delegates to the SCAD the authority to review, as may be required, the official BSE status of Members, based upon their annual reporting of information relevant to the OIE risk assessment. Such information includes any changes in legislation, importation of animals and commodities, controls at feed mills, including random testing of feed, and the BSE surveillance programme and findings.

Previously the OIE took account of the BSE incidence rate within cattle populations. However this approach was abandoned in favour of emphasising effective surveillance and the application of risk management procedures according to the recommendations in the Terrestrial Code. However, the OIE follows with interest the evolution of the incidence rate and continues to publish relevant information (see http://www.oie.int/eng/normes/mcode/en_chapitre_2.3.13.htm#rubrique_encephalopathie_spongiforme_bovine).
Rift Valley fever in Madagascar

Until it was introduced into Saudi Arabia and Yemen in 2000, Rift Valley fever (RVF) tended to be confined to Sub-Saharan Africa.

The disease has recently occurred in Madagascar. Rift Valley fever is a viral disease mainly affecting ruminants but is also transmissible to humans. Rift Valley fever is transmitted to animals by the bite of a mosquito carrying the virus.

Most human infections are caused by direct or indirect contact with the blood or organs of infected animals.

Although there is no evidence of person-to-person transmission, humans can also be infected by mosquito bites.

Owing to its mode of transmission, RVF usually occurs after unusually heavy rainfall or flooding, when conditions are conducive for the vector to multiply in the larval stage.

Although the majority of infected people present no symptoms, some develop an influenza-like syndrome, with muscular pain, headaches, joint pain, vomiting, loss of appetite, and sensitivity to light.

In the severest cases, infected people suffer ocular lesions, neurological problems and haemorrhagic fever.

As of 15 July 2008, at least 20 people in Madagascar have reportedly died as a result of RVF infection, and the disease has claimed the lives of thousands of animals since the beginning of this year.

In April 2008, a joint mission by the World Health Organization (WHO), the World Organisation for Animal Health (OIE) and the Food and Agriculture Organization of the United Nations (FAO) visited Madagascar to advise on the measures to be taken.

However, as control of the infection, notably at its animal source, is costly and the expected funding has not been forthcoming, the proposed response plans could prove impossible to implement.

The response plans provide for RVF control in livestock and the infected human population and improved reporting and laboratory diagnostic systems. It is also planned to raise public awareness in Madagascar concerning the existence of this epizootic/epidemic and to train the government officials responsible for RVF control.

It is only to be hoped that the necessary funds will be made available.

Professor Paul-Pierre Pastoret
activities of reference laboratories & collaborating centres

New OIE Collaborating Centres and Reference Laboratories
approved in May 2008

List of new Collaborating Centres

OIE Collaborating Centre for Training Veterinary Officials, Diagnosing Infectious Animal Diseases and Zoonoses in Tropical Africa
Ecole Inter-Etats des Sciences et Médecine Vétérinaires (EISMV), Dakar
Senegal
Tel.: (00221) 865.10.08
Fax: (00221) 825.42.83
E-mail: tekoagbo2001@yahoo.fr

OIE Collaborating Centre for Validation, Quality Assessment and Quality Control of Diagnostic Assays and Vaccine Testing for Vesicular Diseases in Europe
Centre d’Etudes et de Recherches Vétérinaires et Agrochimiques (CERVA), Ukkel
Belgium
Tel.: (0032-2) 379.04.00
Fax: (0032-2) 379.06.66
E-mail: kris.de.clercq@var.fgov.be

OIE Collaborating Centre for Laboratory Capacity Building
Australian Animal Health Laboratory (AAHL), Geelong, Australia
Tel.: (0061-3) 52.27.50.14
Fax: (0061-3) 52.27.52.50
E-mail: peter.daniels@csiro.au

OIE Collaborating Centre for Surveillance and Control of Animal Protozoan Diseases
National Research Center for Protozoan Diseases
Obihiro University of Agriculture and Veterinary Medicine
Japan
Tel.: (0081-155) 49-5641
Fax: (0081-155) 49-56430
E-mail: igarcpmi@obihiro.ac.jp

OIE Collaborating Centre for Veterinary Services Capacity Building
Center for Animal Health and Food Safety (CAHFS),
University of Minnesota, 136 Andrew Boss Laboratory,
St. Paul, MN 55108
United States of America
Tel.: (001-612) 625-8709
Fax: (001-612) 624-4906
E-mail: cahfs@umn.edu
Web site: www.cahfs.umn.edu
List of new Reference Laboratories

OIE Reference Laboratory for American foulbrood of honey bees

Dr Adriana M. Alippi
Laboratorio de Loque Americana de la Unidad de Bacteriología del Centro de Investigaciones en Fitopatología (CIDEFI), La Plata, Argentina
Tel.: (0054-221) 423 6758 ext. 423
Fax: (0054-221) 425.2346
E-mail: amalippi@netverk.com.ar
alippi@biol.unlp.edu.ar

OIE Reference Laboratory for bovine viral diarrhoea

Dr Peter D. Kirkland
Elizabeth Macarthur Agricultural Institute (EMAI), Private Mail Bag 8, Menangle NSW 2568, Australia
Tel.: (0061-2) 46.40.63.31
Fax: (0061-2) 46.40.64.29
E-mail: peter.kirkland@dpi.nsw.gov.au

OIE Reference Laboratory for enzootic bovine leukosis

Dr Jacek Kuzmak
National Veterinary Research Institute, Pulawy, Poland
Tel.: (0048-81) 886.30.51
Fax: (0048-81) 886.25.95
E-mail: jkuzmak@piwet.pulawy.pl

OIE Reference Laboratory for foot and mouth disease

Dr Eduardo D. Maradei
Laboratorio de Fiebre Aftosa de la Dirección de Laboratorios y Control Técnico, Buenos Aires, Argentina
Tel./Fax: (0054-11) 4836.1115/0066
E-mail: dilab@senasa.gov.ar

Dr Wilna Vosloo
OIE Reference Laboratory for foot and mouth disease, Onderstepoort Veterinary Institute, Exotic Diseases Division, South Africa
Tel.: (0027-12) 529.95.92
Fax: (0027-12) 529.92.49
E-mail: vosloow@arc.agric.za

OIE Reference Laboratory for highly pathogenic avian influenza and low pathogenic avian influenza (poultry)

Dr Hualan Chen
Harbin Veterinary Research Institute, 427 Maduan Street, Harbin 150001, People's Republic of China
Tel.: (0086-451) 8593.5006
Fax: (0086-451) 8273.3132
E-mail: hlchen@hvri.ac.cn, hlchen1@yahoo.com
www.hvri.ac.cn

OIE Reference Laboratory for infectious myonecrosis

Prof. Donald V. Lightner
Aquaculture Pathology Laboratory, Department of Veterinary Science and Microbiology, University of Arizona Building 90, Room 202 Pharmacy/Microbiology, Tucson, AZ 85721 United States of America
Tel.: (001-520) 621.84.14
Fax: (001-520) 621.48.99
E-mail: dvl@u.arizona.edu

OIE Reference Laboratory for white tail disease

Dr A. Sait Sahul Hameed
Aquaculture Biotechnology Division, Department of Zoology, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University, Tamil Nadu), Melvisharam-632 509, Vellore Dt, Tamil Nadu, India
Tel.: (0091-4172) 266.187 (Off), (91-4172) 269.487 (Dir)
Fax: (0091-4172) 269.487
E-mail: cah_sahul@hotmail.com
In response to the geographic spread of highly pathogenic avian influenza (HPAI) H5N1 and the deaths it has caused in wild bird populations, as well as the concern that certain species of wild birds may play a role in the introduction and dissemination of the H5N1 virus along their flyways, FAO has been particularly interested to understand the interactions between wild and domestic birds. Within the Emergency Centre for Transboundary Animal Diseases (ECTAD), FAO has established a Wildlife Disease Programme to promote regional cooperation and action and increase in-country national and regional capacity building through the training and education of biologists, veterinarians, ornithologists and others to better integrate a common understanding of pathogen transmission in affected environments. To support this work, it has produced a new Manual entitled ‘Wild Birds and Avian Influenza: an introduction to applied field research and disease sampling techniques’. This Manual is a collaborative effort by FAO, the French Agricultural Research Centre for International Development (CIRAD), BirdLife International, the Percy Fitz Patrick Institute of African Ornithology, the United States Geological Survey (USGS), Wetlands International, the Wildfowl and Wetlands Trust United Kingdom (WWT), and the Wildlife Conservation Society (WCS).

The Manual addresses the needs of veterinarians, biologists, ornithologists and others intending to undertake wild bird surveillance for avian influenza. However, the techniques are equally applicable to other zoonotic diseases.

The English language version is available on the FAO Web site www.fao.org/avianflu.

In addition to translations in the standard United Nations languages – French, Spanish, Russian, Chinese and Arabic – that are underway or planned, versions in Bahasa Indonesia, Myanmarese, Vietnamese and Turkish are being prepared in response to interest and support. Other language versions may also be developed.
An international workshop on perkinosis in molluscs was held in Vigo, Spain, from 12 to 14 September 2007. The workshop venue was the Centro Tecnológico del Mar (CETMAR). It was commissioned and funded by the European Community and it was additionally sponsored by the Ministry of Fisheries and Maritime Affairs of the Regional Government of Galicia (Spain) and the City Council of Vigo. Its goal was to bring together industry, the research community and government to address the threat to the European shellfish industry posed by perkinosis. Experts from non European countries where shellfish industries are deeply concerned about perkinosis were invited to share the experience of affected countries. The following institutions participated in the organisation of the workshop: Centro de Investigacions Mariñas (Spain), CETMAR (Spain), Université de Bretagne Occidentale – CNRS (France), Station de La Tremblade (IFREMER, France), University of Algarve (Portugal), Istituto Zooprofilattico Sperimentale delle Venezie (Italy), and Instituto de Investigaciones Marinas (CSIC, Spain). Seventy-eight delegates attended the workshop from the following countries: Australia (1), Canada (1), France (15), Italy (5), Korea (3), Morocco (1), Mexico (1), Norway (1), Poland (1), Portugal (3), Spain (35), Tunisia (1), United Kingdom (1), and the United States of America (USA) (9).

The workshop was scheduled through five sessions, each of them starting with an introductory report summarising the state of the art, followed by oral presentations and ending with a roundtable for open discussion. Thirty oral contributions plus seven posters were presented, most of them providing new, unpublished information and some of them reviewing and updating previous information, corresponding to the following issues:

- **Parasites of the genus Perkinsus**: taxonomy and phylogeny, host species, geographic range, life cycle, transmission routes, diagnostic tools.
- **Epizootiology**: temporal patterns of disease dynamics; influence of environmental conditions, host age and stress factors, with particular information from different places in France, Italy, Spain, Korea, Tunisia, Mexico and the USA.
- **Host-pathogen interaction**: interaction of Perkinsus spp. and mollusc defence mechanisms, host genes involved in the immune response, virulence factors of Perkinsus spp., impact on host physiology.

- **Effects on shellfish industry**: review of the production of molluscs in Europe, with emphasis on management and aquaculture of clams in France, Italy and Spain; review of the European regulations on animal health requirements for aquaculture animals and products thereof, and on the prevention and control of certain diseases in aquatic animals.

- **Control and fighting strategies**: chemotherapeutants and their effects on Perkinsus metabolism, zoosanitary prophylaxis, management and technical strategies, natural selection for resistance, selective breeding programmes for resistance, genes and protein markers of resistance.

As part of the commissioned work, this volume has been prepared to provide a close view of the workshop contents and results, with a view to their wide dissemination. The volume includes the five introductory reports, the abstracts of the oral and poster presentations, summaries of the roundtables, and the conclusions of the workshop. A CD-ROM with many of the PowerPoint presentations displayed during the workshop is also provided with this volume.
The Professor Rodolfo M. Perotti Foundation [Fundación Prof. Dr. Rodolfo M. Perotti] has launched a call for any veterinarians wishing to compete for the second edition of the Merit Award. The award consists of a medal, a diploma of honour and a cash prize of $10,000.

Professor Rodolfo M. Perotti’s achievements have undoubtedly been crucial for the expansion of poultry farming in Argentina, in terms of both teaching and the development of the poultry industry.

His work has been highly influential, leading to the creation of Argentina’s first university chair in poultry farming at the Veterinary Science Faculty of the National University of La Plata. He also pioneered industrial poultry farming in Argentina by incorporating modern business technology developments.

The aim of the Professor Rodolfo M. Perotti Foundation is to pay homage to the Professor’s ethical and professional values by awarding a biennial prize alternately in two categories: a Merit Award and a Fellowship.

The Foundation has launched a call for the second edition of the Merit Award to reward veterinarians who have excelled in one of four intensive poultry production disciplines (Management, Genetics, Health, Nutrition).

The contenders’ professional careers will be taken into account, including their contributions to poultry farming in the technical, teaching, scientific, academic and extension fields.

Rodolfo Miguel Perotti
1915-1999
by Dr Luis Garbi

Rodolfo Miguel Perotti was born in Buenos Aires on 9 April 1915. He completed his primary and secondary education at Colegio Nacional Mariano Moreno, graduating with a bachillerato (upper secondary school leaving certificate) in 1932. The following year, he entered the Faculty of Agronomy and Veterinary Science of the University of Buenos Aires, graduating in 1937 with a Doctorate in Veterinary Medicine with an average distinction grade. He married Aurora Brouwer on 31 October 1942 and together they had two children, Elena and Rodolfo, who are also veterinarians.

In 1938, Rodolfo Perotti was appointed by competitive selection as veterinarian for the Municipal Poultry and Egg Market and, the following year, also by competitive selection, he was made veterinarian of the Farm Directorate of Argentina’s Ministry of Agriculture and Livestock. This set him off on a path that would mark his entire life and his true commitment to poultry farming.

He carried out a vast teaching effort in institutions of varying levels, always with the same goal: to improve the knowledge of those wishing to embrace and improve conditions in poultry farming. In 1955, the Faculty of Veterinary Science of the National University of La Plata called upon Rodolfo Perotti to organise and teach Argentina’s first postgraduate veterinary course in Poultry Science and Technology, which led him to become the first Professor to hold the chair in the same year until the appointment was confirmed in 1960, by open competition based on professional experience, qualifications, tests and interviews. He was reconfirmed in this position successively in 1970, 1979 and 1981, until he was honoured with the title of Extraordinary Professor Emeritus in late 1981. In 1973 and

1 Adapted from the curriculum vitae drafted for the Professor Rodolfo M. Perotti Foundation by Dr. Luis Garbi (reproduced with the Foundation’s permission).
1974, by special invitation of the Faculty of Veterinary Science of the National University of Central Buenos Aires Province, he taught the Poultry Production course as Extraordinary Professor of Special Animal Husbandry II, continuing as visiting Extraordinary Professor and joining the ranks of Founding Professors of the aforesaid University.

He published and/or contributed to 200 works, most of which were aimed at disseminating technological standards and knowledge to improve the health and production standards of poultry farms, and he attended many technical and scientific meetings, both in Argentina and abroad.

He lectured on poultry farming at the Faculty of Veterinary Science of the National San Marcos University in Lima (Peru) and at the Faculty of Veterinary Science of the Northeast National University. He addressed the Argentine Association of Dieticians on his specialist subjects at the Symposium on improving Public Dietary Levels. In 1964, he was co-rapporteur for the Deficiency Disease Committee at the Argentine Veterinary Meetings held by the National Academy of Agronomy and Veterinary Science.

In 1961, he joined the Committee for the Control of Newcastle Disease and, in 1963, the Special Advisory Committee for the Bunge & Born Veterinary Science Award. In addition, he made available his poultry farming expertise to many private companies, acting as a consultant to Biona Laboratory, Arbor Acres poultry breeding company and Lepetit Laboratory and others. After working in this technical capacity in private industry, more than two decades ago he founded the Brouwer Laboratory jointly with his children.

He became Full Member of the National Academy of Agronomy and Veterinary Science on 22 May 1986 and was appointed Academician Emeritus in 1993. He was made an Honorary Member of the Support Association for the School of the Argentine Poultry, Rabbit and Bee Breeders’ Association and received a Meritorious Honour Award for promoting Paraguayan Poultry Farming and an Honour Award and gold medal from Peru’s Poultry Farmers’ Association.

He was a member of the World Veterinary Association and the World Poultry Association, a Founder Member of the Argentine Animal Production Association and a Life Member of the Society of Veterinary Medicine.

Dr. Rodolfo M. Perotti was a pioneer who was able to envision a crucial role for poultry farming in food production, and also devised a key role for the veterinary profession in poultry farming.

OIE Conference on veterinary medicinal products in Africa ‘Towards the harmonisation and improvement of registration and quality control’

Dakar, Senegal, 25-27 March 2008

Following the recommendations of the 17th Conference of the OIE Regional Commission for Africa, held in Asmara, Eritrea, in February 2007, the OIE undertook to organise this conference, with the conviction that an effective common market authorisation system for veterinary medicinal products within and between countries can best be achieved through a harmonised regional approach and a regional network of laboratories for quality control.

The registration and market authorisation of veterinary medicinal products is an integral and essential component of veterinary service delivery and should and indeed must, therefore, be included and mandated in national legislation to be within the primary responsibility of the public Veterinary Services.

The OIE scientific Conference on Veterinary medicinal products in Africa: ‘Towards the harmonisation and improvement of registration and quality control’ was attended by over 160 participants, mainly from over 35 African countries, including among others OIE Delegates and focal points in charge of registration and quality control of veterinary medicinal products, representatives of international or regional organisations, such as FAO1, the World Bank, WAEMU2, AU-IBAR3, GALVmed, IFAH4, and USDA-APHIS5, private sector laboratories, OIE Regional Representatives and Collaborating Centres, academics and regulatory veterinarians.

Objectives

The overall objectives of the Conference, listed below, were achieved:

1. To provide an overview and a needs assessment of the current situation in Africa;
2. To promote networking among authorities responsible for the registration, quality control and distribution of veterinary medicinal products;
3. To strengthen collaboration and communication between stakeholders;
4. To strengthen the commitment of users, such as breeder associations, veterinarians and manufacturers, to the regional harmonisation of the regulation and control of the marketing and distribution of veterinary medicinal products;
5. To propose recommendations for the future harmonisation of the regulation, control and registration of veterinary medicinal products in Africa;
6. To strengthen the capacity of Veterinary Services by developing good veterinary governance for the control of veterinary medicinal products.

1- FAO: Food and Agriculture Organization of the United Nations
2- WAEMU: West African Economic and Monetary Union
3- AU-IBAR: African Union – Inter-African Bureau for Animal Resources
4- IFAH: International Federation for Animal Health
5- USDA: United States Department of Agriculture – APHIS: Animal and Plant Health Inspection Service
CONSIDERING
That at least 90% of the OIE-listed diseases of livestock and poultry are present in Africa thereby necessitating veterinary intervention for their prevention and control using vaccination, treatment and other control methods,
That the current registration and distribution practices for veterinary medicinal products in some African countries result in the proliferation of poor quality or counterfeit veterinary medicinal products on the Continent,
That the uncontrolled movement of veterinary medicinal products poses a major threat to animal health, public health and the environment,
That good veterinary governance, which includes the compliance of Veterinary Services with OIE international standards on quality, is instrumental and an essential prerequisite for establishing effective legislation and its efficient enforcement for the registration, distribution and quality control of veterinary medicinal products,
That an effective common market authorisation system for veterinary medicinal products within and between countries can best be achieved through a harmonised regional approach and a regional network of laboratories for quality control,
The major economic advantages associated with the quality and safety of veterinary medicinal products for the development of livestock production, food security and food safety in Africa,
The importance of regional cooperation in the registration, quality control and usage of veterinary medicinal products so as to overcome the inability of some individual countries to effectively institute and maintain such mechanisms because of the high costs for countries working alone,
The existence of international standards regulating the quality assurance, registration and usage of veterinary medicinal products,
The OIE PVS evaluation tool for supporting quality of Veterinary Services,
The importance of controlling residues from veterinary drugs in food products of animal origin,
The OIE conference on veterinary medical products in Africa recommends:

THAT ALL THE RELEVANT STAKEHOLDERS PARTICIPATE TO IMPROVE THE QUALITY OF THE VETERINARY MEDICINAL PRODUCTS MARKETED IN AFRICA.

THAT OIE MEMBER COUNTRIES:
1. Promote with political decision-makers in their respective countries the importance of good veterinary governance and compliance with OIE international standards on quality of Veterinary Services as an important requirement to facilitate the harmonisation and improvement of registration, distribution and quality control of veterinary medicinal products.
2. By using the appropriate high level human resources upgrade and adapt their veterinary pharmaceutical legislation to enhance the regional harmonisation of registration, quality control, distribution and market authorisation procedures.
3. Promote national, regional and sub-regional testing laboratories to develop and implement quality management systems based on ISO7 standards to enable harmonisation and standardisation of test methods.
4. Promote regional networking and appropriate training among laboratories and authorities responsible for the registration and quality control of veterinary medicinal products to improve excellence and reduce the cost of analysis.
5. Develop national institutional, administrative and financial mechanisms to increase the effectiveness of the quality control process starting from good manufacturing practices to the sale and usage of those products under the supervision of Veterinary Services or of the authority responsible for veterinary medicinal products.
6. Allocate appropriate human and financial resources to Veterinary Services to correctly implement their control responsibilities in the entire national territory in collaboration with the other relevant public authorities.
7. Seek partnerships and collaboration with the private sector including private veterinarians, the pharmaceutical industry, supplier laboratories, pharmacists and livestock associations to help regulate and harmonise the marketing and appropriate and sustainable distribution of safe and efficient veterinary medicinal products.
8. Collaborate with OIE Regional and Sub-Regional Representatives and African Union Regional Technical offices (IBAR and PANVAC8) to seek coordination between Regional Economic Communities such as WAEMU, SADC9 and others to move towards regional harmonisation in particular for the improvement of registration by encouraging mutual recognition as well as distribution and quality control of veterinary medicinal products.
9. Stimulate relevant initiatives from the sub-regional organisations to develop regional initiatives in the veterinary medicinal products area.
10. Promote the control of residues from veterinary drugs in food products of animal origin in agreement with standards developed by the Codex Alimentarius Commission and with support from donors and pharmaceutical industries if necessary.
11. Considering their national situation, to seek measures to find solutions to the problems caused by the administration of diclofenac in livestock.
13. Should, in collaboration with OIE, continue to monitor and align with developments and progress within VICH, and endeavour to adopt and implement VICH guidelines into their regulatory framework for veterinary medicines.
14. Organise similar conferences in other regions.
15. Using the output of these conferences, continue to develop and update guidelines and tools to enable OIE Member Countries in Africa and worldwide to organise, manage and implement appropriate legislation and mechanisms for the registration, quality assurance and regulation of veterinary medicinal products, preferably using a regional or sub-regional basis, and promote twinning of Laboratories and Collaborating Centres in Africa.
16. Update and reinforce the OIE PVS evaluation tool in the field of veterinary product registration and control.
17. Continue to follow closely the work of VICH and share the results with all the OIE Member Countries.

7- ISO: International Organization for Standardization
8- PANVAC: Pan-African Veterinary Vaccine Centre
9- SADC: Southern African Development Community
10- VICH: International Cooperation on Harmonization of Technical Requirements for Registration of Veterinary Medicinal Products
The Global Framework for Progressive Control of Transboundary Animal Diseases (GF-TADs) is a joint FAO/OIE mechanism, which combines the strengths of both organisations to achieve the prevention and control of transboundary animal diseases worldwide, and in particular to address their regional and global dimensions. WHO is also associated to this mechanism for zoonotic transboundary animal diseases.

The initiative’s agreement was signed in May 2004, and falls under the broader agreement between OIE and FAO, which was renewed at the same time. The initiative developed out of the foot and mouth disease (FMD) crisis which took place in Europe in 2001.

While the agreement describes the governance and activities at the global and regional levels, only the governance at regional level had been put in place thus far, as part of the response to the avian influenza crisis, which required prompt in-situ coordination.

However, the deliberations during the last International Conference on Avian and Human Influenza in New Delhi in December 2007 emphasised the need for collaboration on the prevention and control of epizootic diseases beyond avian influenza.

There is now a broad recognition that any uncontrolled transboundary animal disease in one single country is a potential threat to all countries, which could have large impacts on the livestock sector and sector-related livelihoods. This clearly demonstrates that the prevention and control of transboundary animal diseases is a Global Public Good.

Implementation of the proposed global governance structure of the GF-TADs, to decide, coordinate and harmonise strategies in the prevention and control of transboundary animal diseases, had therefore become pressing, and was the main purpose of the 1st Global Steering Committee meeting. The results of this meeting are reported below (presentations and discussions).

However, it is important to underline that this collaborative mechanism between two (or three) international organisations is unusual and innovative. This 1st Global Steering Committee meeting was thus largely an exploratory meeting to continue the discussions on the global governance structure, mechanisms and roles.

The meeting was chaired by Mr J.M. Sumpsi (Officer in Charge, Agriculture and Consumer Protection, FAO), with a high-level representation from OIE (Mr B. Vallat) and FAO (Mr J. Butler, Mr S. Jutzi and Mr J. Domenech). Thirty three participants, representing the GF-TADs Regional Steering Committees, Regional and International Organisations, NGOs and Donors, attended the meeting.
Rationale and objectives of GF-TADs

General presentation of the initiative

As mentioned above, GF-TADs is a collaborative coordination framework for the prevention and control of transboundary animal diseases worldwide. It intends to combine both a vertical (by disease) and a transversal (guarantee of good sanitary governance worldwide, based on the OIE recommendations) approaches.

While each region has its own priority diseases (‘indicator diseases’), FMD is an endemic burden worldwide and will benefit from a global control program starting in 2009. This programme designed and implemented in strong partnership between FAO and OIE will follow the example of the GREP programme for rinderpest. In addition, neglected zoonoses such as brucellosis, tuberculosis, rabies, etc., are having a significant impact on public health and will be another priority in the next 5-year Action Plan of the GF-TADs. Avian influenza also remains a priority as well as other emerging and re-emerging zoonoses.

To support the identification, harmonization, and implementation of disease policies and control strategies, GF-TADs will make use of three newly established tools: the FAO/OIE/WHO GLEWS\(^1\), the CMC-AH\(^2\) and OIE/FAO OFFLU\(^3\) (for Avian and Human Influenza only).

Most of the international community’s technical and/or financial assistance in combating animal diseases is delivered at the country level. However, national level assistance alone is not enough when dealing with transboundary animal diseases. Support at the regional and global level is indispensable to harmonize and coordinate activities globally and to provide technical and institutional guidance in the prevention and control of animal diseases. In addition, some activities such as training and information exchange have a huge added value to be tackled at regional/global level.

It is estimated that the optimal balance between national, regional and global financial cost of support programmes is respectively 90%, 8% and 2% and that actions carried out at the regional and global levels however have in fine an impact at the national level. GF-TADs intends to be the right arena for those two important levels, which do not usually get appropriate support.

Complementarities and synergies between OIE and FAO

The mandates of OIE and FAO join up in the field of animal health. For some topics falling into this field, OIE (as the leading International Organisation entirely devoted to animal health issues and in charge of animal health and welfare standards setting) or FAO (as the leading Technical International Agency devoted to food and agricultural issues in developing countries including animal production and health and in charge of designing and implementing strategies and development programmes in these developing countries / regions\(^4\)) have primary responsibility; for other topics, both organisations will intervene according to the chart of complementarities between FAO and OIE agreed upon in 2007.

In those shared fields, clarification of ‘who is doing what’ and ‘how to do it’ is therefore needed in order to avoid duplications and to transform possible negative competition or overlapping into positive synergies. Collaborations between the two organisations can actually take the forms of support, complementarity and synergy.

In an effort to rationalise the collaboration between OIE and FAO in the field of animal health, a chart mentioned in item 14 of OIE and FAO complementarities and synergies was produced in February 2007 and endorsed by the Director General of the two organisations.

While this chart provides a general outline, a companion vade mecum will be finalised in the coming weeks to clarify the details of the proposed collaboration. The chart and this companion document will be presented to the OIE and FAO appropriate high management and will constitute the back-bone of the GF-TADs initiative.

1 - GLEWS: Global Early Warning System
2 - CMC-AH: Crisis Management Center for Animal Health
3 - OFFLU: OIE/FAO network of expertise on Avian Influenza
4 - The independent external evaluation really underlined the competencies of FAO in the prevention and control of animal health (HPI in particular)
Achievements at the global and regional levels

Reports from the Regional GF-TADs Steering Committees (regional activities)
18 Lots of results have been achieved at the regional level since 2004.
19 From an institutional perspective, all regional GF-TADs Steering Committees have been put in place since 2006 (Asia: March 2005; Americas: April 2005; Europe: October 2005; Middle East: April 2006; and Africa: April 2006), along with the regional GF-TADs Secretariats (the OIE Regional Representations). The roles and mandates of the regional Steering Committees and their Secretariats need however to be further consolidated; the Terms of Reference for the Asian Regional Steering Committee and Secretariat will serve as the model to be submitted to the other regions. As for the regional Secretariats, their roles are mainly to facilitate the transmission of information and help in the organisation of regional events. Technical inputs will be provided by the HQ, regional and national teams of experts. At the regional level the expert teams will essentially be located in the Regional Animal Health Centers (see below) which are hosted by the Regional OIE or FAO Representations. The GF-TADs Regional Secretariats will provide policy and strategic advice to the Regional Animal Health Centers (RAHCs) and Regional Support Units (RSUs).

20 Overall, Africa was identified as the continent with the weakest capacities to respond to a crisis. However, thanks to the PARC5 and PACE6 programmes implemented over the past 20 years, most of the countries have been able to cope with the avian influenza epizootic so far. This underlines the importance of long-term investment programmes in the field of animal health (see point 35).

21 Operational and fully-equipped RAHCs are indispensable for the implementation of the GF-TADs activities at the regional level (RSUs). These are already in place in Africa and in the Middle-East but need further operationalization.

Report from the GF-TADs Global Secretariat (global activities)
22 A detailed global activity form summarizes the main OIE-FAO joint achievements at the global level. They encompass: (i) the holding of many technical meetings, to ensure the appropriate lobbying in favor of the prevention and control of animal diseases; (ii) the definition of vertical (highly pathogenic avian influenza) and transversal (compensation, good governance) guidelines and strategies; (iii) the development of tools (GLEWS, CMC-AH; OFFLU; IPFSAPH7; laboratory, epidemiology and socio-economic networks and regional leading laboratories and teams); (iv) the experts sharing and working groups; and (v) the design and implementation of priority programmes (rinderpest, FMD).

Results of the first evaluation of the GF-TADs initiative
23 A first evaluation of the GF-TADs initiative was performed in December 2005, a year and a half after its launching. Thirty recommendations were provided to reinforce the partnership. A document summarises the implementation status of these recommendations. Most of them have been put in place over the past two years; additional efforts are needed in the setting up of the regional animal centers, the information sharing and disease notification, the networking activities (laboratories, epidemiosurveillance and socio-economics) and an increased participation of FAO in OIE working groups. Only one recommendation regarding the implementation of a second evaluation has not been put in place (see below).

24 It was underlined that lots of results have been achieved so far and that it would be important for the OIE and FAO member countries to be informed of all this work. It was proposed that a report of the GF-TADs achievements be presented during the next OIE General Session and FAO Conferences. A GF TADs website could also be an efficient way of sharing information.

5. PARC: Pan African Rinderpest Campaign
6. PACE: Pan-African Programme for the Control of Epizootics
7. IPFSAPH: International Portal on Food Safety, Animal and Plant Health
Setting up the global governance

Governance structure at the global level

It is proposed that the governance at the global level will involve three entities: the Global Steering Committee (guidance role), the Management Committee (decision-making role) and the Global Secretariat (implementation role).

Composition of the bodies at the global level

Although specific Terms of Reference have been drafted for the three bodies, the OIE and FAO are still working for their finalisation. As a result, the proposed Terms of Reference could not be shared during the meeting. The participants asked FAO and OIE to come to an agreement on these Terms of Reference and to circulate them shortly.

The main principles guiding the establishment of the governance structure are:

- The roles of the Regional Organisations in the Global Steering Committee were unclear and will need to be clarified in the Global Steering Committee Terms of Reference. The sustainability of the GF-TADs regional activities implies the strong involvement of the Regional Specialised Organisations (such as ASEAN for Asia, IICA for the Americas or IBAR for Africa).
- The recipient countries are represented (not only the donor countries are here) in the Global Steering Committee via the presidents of the Regional GF-TADs Steering Committees. It is, however still under discussion whether these countries could be observers. The regional GF-TADs Steering Committees were appointed according to the FAO-OIE GF-TADs agreement but their final composition needs to be further precised with additional details.
- The donors invited to be part of the GF-TADs Global Steering Committee are those already involved in FAO and OIE activities (mainly through HPAI activities). It was suggested to also involve the middle income country donors, as such countries are increasingly inclined to fund animal health activities. The private sector is represented via the IFAH.
- Two options on how to appoint/select donors to be part of the Global Steering Committee were discussed during the meeting: either OIE or FAO (co- Presidents) appoint the two donors; or the donors select their representatives out of a donor’s caucus. The donors will be consulted electronically over the coming weeks to decide upon the selection mechanism.
- The Secretariat is proposed to be staffed with people in charge of the facilitating and coordination support activities only (Secretary and assistant to the Secretary). All proposed other technical staff are involved in their operational teams/units (GLEWS, CMC-AH, etc.).
The way forward

General orientations for 2008-2013

A general chart was presented during the meeting. It lists all the activities needed to ensure all the crucial steps in fighting animal diseases, which are: awareness, preparedness, surveillance and disease intelligence, understanding of socio-economic context, prevention, control, information and communication and coordination. Surveillance, early detection and rapid response remain the credo of the GF-TADs.

Proposed activities involved mainly the global and regional levels; however, an international emergency fund is also currently under consideration with OIE, FAO, World Bank and OECD to directly support developing countries, should an epizootic occur particularly for compensation resources to farmers. These funds may also be used as part of a prevention program, only in the event of a significant regional threat.

The proposed Action-Plan will also be aligned with the conclusions of the next Inter-Ministerial Cairo Conference (October 2008) on HPAI and other zoonotic diseases. The final Action Plan will be circulated to the Global Steering Committee by the end of the year to be endorsed during the next global Steering Committee. In the meantime, an Interim Action Plan will be implemented, mainly consisting in the preparation of the Cairo conference and of all the documents to move forward (see last section).

Budget presentation for 2008-2013

A global budget, amounting to circa 100 million USD over five years (2008-2013) was rapidly presented. It is largely based on the initial budget enclosed on the 2004 GF-TADs agreement, with as main changes the addition of the CMC-AH and socio-economic networks budgets.

Since 2004, funding of the GF-TADs has mainly been provided through HPAI funds. Those funds are driven by the threat of a possible Avian and Human Influenza pandemic and are therefore mostly ‘opportunistic’ and short-term. It is hoped that the Cairo conference will set the stage for a more comprehensive funding of animal health activities (HPAI and other zoonotic diseases). Additional funds will be needed for the GF-TADs initiative and the organisation of a pledging session is under discussion. It should definitely articulate with the Cairo pledging conference to avoid duplication of funding and to ensure that zoonotic and non-zoonotic animal diseases receive equal attention.

The discussions also surfaced the need for the donors to reconsider the way animal health should be funded. Long-term investments are instrumental to ensure the sustainable control of animal diseases worldwide. Two best examples are GLEWS and CMC-AH whose efficiency implies their running on the long-term. The issue is that most of donors do not have visibility in the programming of the funds allocated to the livestock sector and are ill-equipped to fund activities over a 10-year period. One crucial role of GF-TADs will be to ensure the necessary lobbying for donors to conceive new ways of supporting animal health activities.

The following comments were made by the participants:
- The budget should mention not only the overall 5-year needs but also identify the funding gaps.
- Clear differentiation should be made between the collaboration activities and the technical activities —regional (RAHCs) and global (GLEWS, CMC-AH, OFFLU, etc.)—, for donors to be able to fund according to their internal priorities and available financial envelops. It will also clarify the fact that the budgets of the ‘modules’ do not superpose to the overall budget.
- All proposed activities participate in the prevention and control of TADs and therefore are Global Public Goods. As a result, grants —and not loans— should be the priority financial tools in use.
- Investments at the national level need to be clearly identified.

A revised budget taking all these comments into account will be circulated to the Steering Committee members in preparation of the pledging session for the GF-TADs initiative.
Preparation of a pledging session

35 The meeting did not finalise the conclusions of the discussions regarding this matter. This session should be carefully planned in order to be successful and avoid Donors’ lassitude. Notably, the issue could be part of the advocacy work to be presented during the Cairo Inter-Ministerial Conference or to be at least in line with its conclusions (see point 34).

Preparation of the Second evaluation

36 A second evaluation of the GF-TADs will take place as soon as possible and in any case before the end of 2008. It will identify the possible weaknesses in the implementation of the initiative and identify if operating in a collaborative framework fosters trust and credibility for both OIE and FAO. The Global Secretariat will draft the Terms of Reference for the exercise.

37 The results of the evaluation will be shared during the second Global Steering Committee, should the calendar allow it and will serve as guidance for the next 5-year Action Plan.

38 The participants insisted that the evaluation be independent and that the Global Steering Committee be informed and involved throughout the whole process.

39 As for the first one, the second evaluation will be equally co-financed by OIE and FAO.

Conclusions - next steps

40 The meeting allowed covering a wide range of topics, from technical to financial and institutional issues.

41 The meeting addressed some organisational issues to be taken into account in the future: all the documents, particularly those where decisions are to be made, will be circulated at least one month prior to the Steering Committee meeting.

42 Regarding the objectives which could not be reached during the meeting such as the composition of the Global Steering Committee, all the suggestions provided during the meeting will be taken forward; notably the following documents will be circulated electronically to the participants in the coming weeks:
- A detailed Work Plan / Roadmap until the next Global Steering Committee meeting scheduled early 2009 (date to be determined)
- Tentative Terms of Reference for the Global Steering Committee, the Management Committee and the Global Secretariat;
- Proposed composition of the GF-TADs Global Steering committee and Management Committee
- A revised budget (see above)
- Tentative Terms of Reference for the 2nd evaluation of the GF-TADs initiative
- The Companion Note of the complementarity chart.

43 The establishment of the Global GF-TADs Steering Committee Secretariat in Rome will be confirmed shortly.

44 The date and venue of the next Global Steering Committee will be proposed (tentatively March 2009).

45 The participants will have one month to provide their feed-back.
August

Meetings of the Three Divisions of the International Union of Microbiological Societies (IUMS), 5-15 August, Istanbul (Turkey)

XII International Congress of Bacteriology and Applied Microbiology
5-9 August

XII International Congress of Mycology
5-9 August

XIV International Congress of Virology
10-15 August

Tel.: +90 216 330 90 20
Fax: +90 216 330 90 05/06
iums2008@topkon.com
www.iums2008.org

Refreshing Course on Poultry Diseases
21-23 August,
26-28 August and 30 August
Hanoi (Vietnam)
Dr Patrice Gautier
Asian Veterinary & Livestock Services (ASVELIS)
D2/D4-98, To Ngoc Van, Quang An, Tay Ho
Hanoi (Vietnam)
Tel.: 04 718 2779
Patrice@asvelis.com
www.asvelis.com

First OIE Inter American Meeting on Animal Welfare
19-20 August
Panama City (Panama)
www.rr-americas.oie.int

4th International Conference on Antimicrobial Agents in Veterinary Medicine
24-28 August
Prague (Czech Republic)
AVM Conference Secretariat
PO Box 29041, Tel Aviv 61290
Israel
Tel.: +972 3 5175150
Fax: +972 3 5175155
aavm08@targetconf.com
www.aavmconferences.com/aavm2008/

June
(events not included in Vol. 2-2008)

European Surveillance Network for Influenza in Pigs (ESNIP)
4-5 June
Gent (Belgium)
Kristien.vanreeth@UGent.be

Pacific GF-TADs Regional Supporting Unit Meeting
9-12 June
Suva (Fiji)
OIE Regional Representation for Asia and the Pacific
rr.asiapacific@oie.int

3rd Congress of European Microbiologists
28 June - 2 July
Göteborg (Sweden)
1-3, Rue de Chantepoulet
P.O. Box 1726
CH-1211 Geneva 1
Switzerland
Tel.: +41 22 908 0488
Fax: +41 22 732 2850
fems@kenes.com

33rd Annual World Small Animal Association Congress (WSAVA)
20-24 August
Dublin (Ireland)
Congress Secretariat
Ovation Group
1 Clarinda Park North
Dun Laoghaire, Co. Dublin, Ireland
Tel.: +353 1 280 2641
Fax: +353 1 280 5405
wsava2008@ovation.ie
www.wsava2008.com/
OIE Symposium ‘Diagnosis and Control of Bee Diseases’

26-28 August

CVUA Freiburg (Germany)
Dr Wolfgang Ritter
CVUA Freiburg, FB: Bienen (bee team)
Am Moosweiher 2, D 79108 Freiburg
National and International (OIE)
Reference Laboratory for bee diseases
Tel.: +49 761 1502 175
or +49 761 1502 0
Fax: +49 761 1502 299
or +49 761 6203 6
Info@oie-freiburg.de

AAWS International Animal Welfare Conference

31 August - 3 September
Queensland (Australia)
www.daff.gov.au

September

Veterinary Medicines Summer School

8-10 September
Fitzwilliam College, Cambridge (United Kingdom)
Tel.: +44 207 017 74 81
www.animalpharmevevents.com/school

14th Seminar on Harmonization of Registration and Control for Veterinary Medicines

8-12 September
Miami, Florida (United States of America)
r:americas@oie.int

International Meat Secretariat Annual Conference

7-11 September
Cape Town (South Africa)
manieb@sanic.co.za

Brucellosis 2008 International Research Conference

10-13 September
Royal Holloway,
University of London,
Egham (United Kingdom)
Dr Adrian M. Whatmore
Dept. of Statutory and Exotic Bacterial Diseases. Veterinary Laboratories Agency
Woodham Lane, Addlestone
United Kingdom
Tel.: +44 (0) 1932 35 73 11
Fax: +44 (0) 1932 35 74 23
a.whatmore@vla.defra.gsi.gov.uk
brucellosis2008@vla.defra.gsi.gov.uk

13th Conference on Food Microbiology

11-12 September
Liege (Belgium)
Caroline de Backer - ULg / FMV / MDAQA
Bd de Colonster
4000 Liege (Belgium)
Tel.: +32 (0) 4 366 42 26
caroline.debacker@ulg.ac.be

38th International Congress of the World Association for the History of Veterinary Medicine

11-13 September
Engelberg (Switzerland)
Max Becker
max.becker@access.uzh.ch
congress.sv svm.ch/congress.html

XV Brazilian Conference of Veterinary Parasitology

14-18 September
Curitiba (Brazil)
www.cbpv2008.com.br

23rd Conference of the OIE Regional Commission for Europe

15-19 September
Vilnius (Lithuania)
regactivities.dept@oie.int

Meeting of the OIE Biological Standards Commission

23-25 September
OIE Headquarters,
Paris (France)
scientific.dept@oie.int

Extraordinary meeting of the OIE Administrative Commission

23-25 September
OIE Headquarters,
Paris (France)
scientific.dept@oie.int

Meeting of the OIE Scientific Commission for Animal Diseases

30 September to 2 October
OIE Headquarters,
Paris (France)
scientific.dept@oie.int

20th Central American and Caribbean Congress on Poultry Production

24-27 September
Nicaragua
congreso.avicola@anapa.org.ni
www.anapa.org.ni/
October

The 8th Biennial Conference of the European Wildlife Disease Association (EUDA)
2-5 October
Rovinj, Istria (Croatia)
www.ewda2008.org/

SPS Committee (Agreement on Sanitary and Phytosanitary Measures)
6-10 October
Geneva (Switzerland)

FAO/OIE/WHO Joint Technical Consultation on Avian Influenza at the Human-Animal Interface
7-9 October
Verona (Italy)

XIX Latin American Congress on Microbiology (ALAM 2008)
11-15 October
Quito (Ecuador)
www.microbiologiaecuador.com/

Second International Workshop on Equine Viral Arteritis
13-15 October
Lexington, Kentucky (United States of America)
Department of Veterinary Science
University of Kentucky
108 M.H. Gluck Equine Research Center
Lexington, KY 40546-0099
United States of America
Tel.: (859) 257-4757
Fax: (859) 257-8542

Meeting of the Aquatic Animal Health Standards Commission
13-17 October
OIE Headquarters, Paris (France)
trade.dept@oie.int
www.oie.int/aac/eng/en_fdc.htm

Onderstepoort Veterinary Institute Centenary Celebrations and Pan-African Veterinary Conference
7-9 October
Onderstepoort (South Africa)
petrie@sava.co.za

4th Modern Drug Discovery and Development Summit
15-17 October
San Diego, CA (United States of America)
Josette Barba
josette.barba@gtcbio.com
Tel: 626-256-6405
www.modemdrugmeeting.com/

2nd OIE Global Conference on Animal Welfare: ‘Putting the OIE standards to work’
20-22 October
Cairo (Egypt)
trade.dept@oie.int
a.balmont@oie.int
www.oie.int/eng/A_AW2008/home.htm

Nano Risk Conference
21-23 October
Paris (France)
www.upperside.fr/nanorisk2008/nanorisk2008intro.htm

Sharm El-Sheikh International Ministerial Conference on Avian and Pandemic Influenza
24-26 October
International Conference Centre Sharm El-Sheikh (Egypt)
Conference secretariat
info@imcapi2008.gov.eg
www.imcapi2008.gov.eg

Food Safety: Veterinary Roles for the World Kitchen (15th Congress of the Federation of Asian Veterinary Associations - FAVA & OIE Symposium)
27-29 October
Bangkok (Thailand)
Conference Secretariat:
The Thai Veterinary Medical Association
69/26 Soi Patumwan Resort
Phayathai Rd., Ratchathewee
Bangkok 10400 (Thailand)
Tel.: +66 2 255 1309
Fax: +66 2 252 8773
fava2008@hotmail.com
achariya.saiasuta@gmail.com
www.fava2008.com/

15th Congress of the Federation of Asian Veterinary Associations
27-30 October
Bangkok (Thailand)
info@fava2008.com

OIE Regional Seminar on communication
30-31 October
Bangkok (Thailand)
m.zampaglione@oie.int
9th International Meeting
‘Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases’
30 October - 1 November
Nairobi (Kenya)
Michel Tibayrenc
Institut de recherche pour le développement (IRD)
michel.tibayrenc@ird.fr
www.th.ird.fr/site_meeting/menu.htm

November

8th Convention of Association of Public Health Veterinarians
November
Lucknow, Uttar Pradesh (India)
Dr A.K. Srivastava
19/51, Sector-19, Indira Nagar,
Lucknow-226016
Uttar Pradesh (India)
Tel.: +91 522 271 58 00
ak.srivastava55@gmail.com

Managing Alien Species for Sustainable Development of Aquaculture and Fisheries (MALIAF)
5-7 November
Florence (Italy)
Dr Francesca Gherardi
University of Florence
francesca.gherardi@unifi.it
www.dbag.unifi.it/maliaf/

New methodologies and interdisciplinary approaches in global change research
5-10 November
Centre IGESA
Île de Porquerolles, Hyères,
(France)
Ms JeanKelly
European Science Foundation (ESF)
Conferences Unit
Brussels, Belgium
Tel.: +32 (0)2 533 2025
Fax: +32 (0)2 538 8486
Please quote 08-284 in any correspondence

19th Conference of the OIE Regional Commission for the Americas
17-21 November
Havana (Cuba)
regactivities.dept@oie.int

Global Meeting on Veterinary Public Health
19-21 November
Lucknow (India)
Dr A.K. Srivastava
19/51 Sector -19
Indira Nagar, Lucknow (India).
PIN-226 016
Tel.: +91 522 271 58 00
Fax: +91 522 407 18 26
ak.srivastava55@gmail.com

Veterinary vaccines
26-27 November
Prague (Czech Republic)
registrations@informa-ls.com
www.animalpharmevents.com/summi

Congress on biotechnology
30 November - 5 December
Havana (Cuba)
Dr Hector Luis Machado Morales
Tel.: +537 271 60 22
Fax: +537 273 17 79
hector.machado@cigb.edu.cu
bh2008.cigb.edu.cu/

Epidemics

Epidemics Conference
1-3 December
Asilomar, CA
(United States of America)
Nina Cosgrove
Epidemics Conference Secretariat
Tel.: + 44 1865 843297
Fax: +44 1865 843958
n.cosgrove@elsevier.com

BIT’s first Annual World Vaccine Congress (WVC)
1-5 December
Guangzhou (People’s Rep. of China)
www.bitlifesciences.com

International conference on foot and mouth disease
1-5 December
Asunción (Paraguay)
scientific.dept@oie.int

Vaccines: 2nd Global Congress
7-9 December
Boston (United States of America)
www.vaccinecongress.com
March

3rd African Veterinary Congress
17-19 March
Yaounde (Cameroon)
www.onvc.org

First OIE International
Conference on Animal
Identification and Traceability
22-25 March
Buenos Aires (Argentina)

May

Meeting of the OIE
Administrative Commission
21-22 May
OIE Headquarters
Paris (France)

77th General Session
of the OIE
24-29 May
Maison de la Chimie
and OIE Headquarters
Paris (France)

June

World Association of Veterinary
Laboratory Diagnosticians
(WAVLD) Annual Conference
Madrid, Spain
17-20 June 2009
Jose Luis Blanco [jlblanco@vet.ucm.es]

OIE/FAO International conference
on foot and mouth disease
24-26 June 2009
Asunción (Paraguay)
scientific.dept@oie.int

October

Conference of Deans:
‘Evolving veterinary education
for a safer world’
12-14 October
Maison de la Chimie,
Paris (France)
s.suarez@oie.int

26th Conference of the OIE
Regional Commission for Asia,
the Far East and Oceania
Beijing (People’s
Republic of China)
regactivities.dept@oie.int

10th Conference
of the OIE Regional Commission
for the Middle East
Qatar
regactivities.dept@oie.int
questions and answers

question:
What is the concern with trade in wildlife?

answer:
Because much of the trade is illegal, animal protection and welfare issues, and animal disease prevention and control guidelines are inevitably not respected. This trade threatens the disease status of the trading countries, while illegal poaching threatens domestic and wild animal populations. But the legal trade of wildlife also requires disease and animal welfare control measures that are in compliance with the OIE Terrestrial and Aquatic Animal Health Codes to prevent disease spread, and avoid mistreatment of animals. It also requires the implementation of the rules decided by CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) regarding trade in endangered species.

question:
How does compartmentalisation work?

answer:
Biosecurity measures can be established to create a distinct ‘compartment’ whereby any contact between wild and domestic animals is prevented in all the components of the compartment (production, feed plant, transport, etc...). This will prevent disease transmission either way. Compartmentalisation enables a country to preserve the health status of domestic animals even when a disease is present in the wild, and allows continued safe trade in animals and animal products. Chapter 1.3.5. of the OIE Terrestrial Animal Health Code (2007) outlines the sequence of steps to be taken in establishing a zone/compartment and having it recognised for international trade purposes.
OIE MEMBERS (172)

AFGHANISTAN FRANCE NEW ZEALAND
ALBANIA GABON NICARAGUA
ALGERIA GAMBIA NIGER
ANDORRA GEORGIA NIGERIA
ANGOLA GERMANY NORWAY
ARGENTINA GHANA OMAN
ARMENIA GREECE PAKISTAN
AUSTRALIA GUATEMALA PANAMA
AUSTRIA GUINEA PARAGUAY
AZERBAIJAN GUINEA BISSAU PERU
BAHRAIN GUYANA PHILIPPINES
BANGladesh HAITI POLAND
BARBADOS HONDURAS PORTUGAL
BELARUS HUNGARY QATAR
BELGIUM ICELAND ROMANIA
BELIZE INDIA RUSSIA
BENIN INDONESIA RWANDA
BHUTAN IRAN SAO TOME AND PRINCIPE
BOLIVIA IRAQ SAUDI ARABIA
BOSNIA AND HERZEGOVINA IRELAND SENEGAL
BOTSWANA ISRAEL SERBIA
BRAZIL ITALY SIERRA LEONE
BRUNEI JAMAICA SINGAPORE
BULGARIA JAPAN SLOVAKIA
BURKINA FASO JORDAN SLOVENIA
BURUNDI KAZAKHSTAN SOMALIA
CAMBODIA KENYA SOUTH AFRICA
CAMEROON KOREA (DEM. PEOPLE’S REP.) SPAIN
CANADA KOREA (REP. OF) SRI LANKA
CAPE VERDE KUWAIT SUDAN
CENTRAL AFRICAN REP. KYRGYZSTAN SURINAME
CHAD LAOS SWAZILAND
CHILE LATVIA SWEDEN
CHINA (PEOPLE’S REP. OF) LEBANON SWITZERLAND
CHINESE TAIPEI LESOTHO SYRIA
COLOMBIA LIECHTENSTEIN TAJKISTAN
COMOROS LIBYA TANZANIA
CONGO LUXEMBOURG THAILAND
CONGO (DEM. REP. OF THE) MADAGASCAR TOGO
COSTA RICA MALAWI TRINIDAD AND TOBAGO
CÔTE D’IVOIRE MALAYSIA TUNISIA
CROATIA MALDIVES TURKEY
CUBA MALI TURKMENISTAN
CYPRUS MALTA UGANDA
CZECH REPUBLIC MAURITANIA UKRAINE
DENMARK MAURITIUS UNITED ARAB EMIRATES
DJIBOUTI MEXICO UNITED KINGDOM
DOMINICAN REP. MOLDAVIA UNITED STATES OF AMERICA
ECUADOR MONGOLIA URUGUAY
EGYPT MONTENEGRO UZBEKISTAN
EL SALVADOR MOROCCO VANUATU
EQUATORIAL GUINEA MOZAMBIQUE VENEZUELA
ERITREA MYANMAR VIETNAM
ESTONIA NAMIBIA YEMEN
ETHIOPIA NEPAL ZAMBIA
FIJI ISLANDS NETHERLANDS ZIMBABWE
FINLAND NEW CALEDONIA
FORMER YUG. REP. OF MACEDONIA
Turkey declares freedom from highly pathogenic avian influenza

Ankara (Turkey), 14th July 2008

Please, read full article on page 38

Fig. 1
Distribution of HPAI outbreaks

Fig. 2
Based on risk assessment and risk analysis, Turkey was divided into three risk zones
OIE
International Conference
on Animal Identification
and Traceability

Buenos Aires, 22-25 March 2009

For further information, please contact the OIE Headquarters:

by electronic mail:
traceability-2009@oie.int

by telephone:
+ 33 (0)1 44 15 18 88